
COSC	462
Parallel	Programming

George	Bosilca	and	Piotr	Luszczek
TA:	Wyer,	Austin	R	



All	you	need	to	know	about	…

• http://icl.cs.utk.edu/classes/cosc462
• Prerequisite	CS360:	System	Programming
• C/C++,	make,	python/gnuplot/R

Piotr	Luszczek
Claxton	218

George	Bosilca
Claxton	308



Grading

• Exam	1	=	20%
• Exam	3	=	30%	(cumulative)
• Homework	=	30%
• Project	=	20%
• Grading	on	the	curve

Exams

• 1 midterms	and	1	final
• Grading
• On	paper,	multiple	choice
• Some	questions	will	require	a	
more	detailed	answer



Grading Homework

• [Weekly]	programming	projects
• 4-8	extra	hours	of	work
• Based	on	lectures
• Incremental	additions	over	the	
duration	of	the	class

• Grading
• Correctness

• Of	the	result
• Of	the	principle	of	the	homework

• Performance
• Not	required	on	all	homework
• Except	when	clearly	specified

• Exam	1	=	20%
• Exam	3	=	30%	(cumulative)
• Homework	=	30%
• Project	=	20%
• Grading	on	the	curve



Grading Project

• Team	work	encouraged	(max	3)
• Mostly	topics	in	parallel	
computing	not	covered	in	class
• The	list	on	the	class	website	will	
be	updated	before	the	project	
start
• One	team	per	subject

• First	come	/	First	serve

• Return	5	minutes	video	max
• Youtube,	Vimeo,	*	with	public	
visibility
• Slides	/	Animations	/	Narration	/	
Links

• Exam	1	=	20%
• Exam	3	=	30%	(cumulative)
• Homework	=	30%
• Project	=	20%
• Grading	on	the	curve



Textbooks

• Generic
• Parallel	Programming	in	C	with	MPI	and	OpenMP,	by	Michael	J.	Quinn
• An	introduction	to	Parallel	Programming,	by	Peter	S.	Pacheco

• Specialized
• Using	MPI,	Third	Edition,	by	William	Gropp,	Ewing	Lusk	and	Anthony	Skjellum
• Using	Advanced	MPI	Modern	Features	of	the	Message-Passing	Interface,	by	William	
Gropp,	Torsten Hoefler,	Rajeev	Thakur	and	Ewing	Lusk

• Programming	Massively	Parallel	Processors,	Third	Edition:	A	Hands-on	Approach,	by	
David	B.	Kirk	and	Wen-mei W.	Hwu

• Online	documents	MPI	3.1,	OpenSHMEM.
• Don’t	hesitate	to	use	your	preferred	search	engine	to	find	more	
information	and/or	examples



Homework

• Github classroom	and	github
• The	homework	will	have	a	repo	that	you	will	fork	(github interface)
• Once	a	new	homework	has	been	added	you	will	update	your	fork

• git remote	add	XXX	master
• git pull

• Each	homework	will	be	developed	in	a	branch	with	the	well-defined	name	
(hw#)	(not	capitals)
• Upon	deadline	I	will	pull	the	branch,	test	it	and	add	a	file	with	comments	and	grades
• You	will	be	free	to	merge	the	branch	in	your	fork	(or	not)
• I	do	expect	you	to	keep	things	private	(unless	otherwise	specified)

• Each	homework	will	generate	a	library
• Automatic	testing	is	WIP



What	you	will	learn

• Why	parallelism	is	important
• How	to	expose	the	parallelism	available	on	an	algorithm
• How	to	evaluate	your	algorithm	scalability
• How	to	use	parallel	and	distributed	programming	paradigms	to	reach	
your	goals
• POSIX	threads,	OpenMP
• MPI,	OpenSHMEM
• CUDA
• MPI+X


