COSC 462 Parallel Programming

George Bosilca and Piotr Luszczek

TA: Wyer, Austin R

All you need to know about ...

- http://icl.cs.utk.edu/classes/cosc462
- Prerequisite <u>CS360: System Programming</u>
- C/C++, make, python/gnuplot/R

George Bosilca Claxton 308

Piotr Luszczek Claxton 218

Grading

- Exam 1 = 20%
- Exam 3 = 30% (cumulative)
- Homework = 30%
- Project = 20%
- Grading on the curve

Exams

- 1 midterms and 1 final
- Grading
 - On paper, multiple choice
 - Some questions will require a more detailed answer

Grading

- Exam 1 = 20%
- Exam 3 = 30% (cumulative)
- Homework = 30%
- Project = 20%
- Grading on the curve

Homework

- [Weekly] programming projects
 - 4-8 extra hours of work
 - Based on lectures
 - Incremental additions over the duration of the class
- Grading
 - Correctness
 - Of the result
 - Of the principle of the homework
 - Performance
 - Not required on all homework
 - Except when clearly specified

Grading

- Exam 1 = 20%
- Exam 3 = 30% (cumulative)
- Homework = 30%
- Project = 20%
- Grading on the curve

Project

- Team work encouraged (max 3)
- Mostly topics in parallel computing not covered in class
 - The list on the class website will be updated before the project start
 - One team per subject
 - First come / First serve
- Return 5 minutes video max
- Youtube, Vimeo, * with public visibility
- Slides / Animations / Narration / Links

Textbooks

- Generic
 - <u>Parallel Programming in C with MPI and OpenMP</u>, by Michael J. Quinn
 - An introduction to Parallel Programming, by Peter S. Pacheco
- Specialized
 - <u>Using MPI, Third Edition</u>, by William Gropp, Ewing Lusk and Anthony Skjellum
 - <u>Using Advanced MPI Modern Features of the Message-Passing Interface</u>, by William Gropp, Torsten Hoefler, Rajeev Thakur and Ewing Lusk
 - <u>Programming Massively Parallel Processors, Third Edition: A Hands-on Approach</u>, by David B. Kirk and Wen-mei W. Hwu
- Online documents <u>MPI 3.1</u>, <u>OpenSHMEM</u>.
- Don't hesitate to use your preferred search engine to find more information and/or examples

Homework

- Github classroom and github
- The homework will have a repo that you will fork (github interface)
 - Once a new homework has been added you will update your fork
 - git remote add XXX master
 - git pull
 - Each homework will be developed in a branch with the well-defined name (hw#) (not capitals)
 - Upon deadline I will pull the branch, test it and add a file with comments and grades
 - You will be free to merge the branch in your fork (or not)
 - I do expect you to keep things private (unless otherwise specified)
 - Each homework will generate a library
 - Automatic testing is WIP

What you will learn

- Why parallelism is important
- How to expose the parallelism available on an algorithm
- How to evaluate your algorithm scalability
- How to use parallel and distributed programming paradigms to reach your goals
 - POSIX threads, OpenMP
 - MPI, OpenSHMEM
 - CUDA
 - MPI+X