
1/8

COSC 462

Parallel Sorting

Piotr Luszczek

September 25, 2017



2/8

Sequential Sorting: Two Examples

● Quicksort

– Θ(N log N)

– Fast in practice

– Unstable
● Data with identical keys might end up in a different order

– Many applications require those data to retain their order
– Sensitive to median selection

● Worst case complexity is quadratic
● Using median of medians is complicated and costly

● Heap sort

– Θ(N log N)

– Slower in practice
● Building and maintaining virtual tree of data: heap

– Stable

– Worst case complexity is the same as the average case



3/8

Naive Parallel Sort (Don’t Use!)

largest value:

N/P+log P

2nd largest value:

N/P+log P

.

.

.

.

.

.

.

.

Repeat for each of N elements

● Complexity
● (N/P+log P) * N = N2/P + N log P

● Very simple implementation:
for (e = 0; e < N; ++e)
  MPI_Reduce(…, MPI_MAX)

● Partitioning is simple:
● Each process “p” gets N/P 

elements



4/8

Improved Naive Parallel Sort

largest value:

log P

2nd largest value:

log P

.

.

.

.

.

.

.

.

Repeat for each of N elements

● Complexity
● N/P log N/P + (log P) * N =

= N/P log N/P + N log P
● Very simple implementation:
quicksort();
for (e = 0; e < N; ++e)
  MPI_Reduce(…, MPI_MAX)

quicksort()quicksort()quicksort()quicksort()

N/P log 
N/P

N/P log 
N/P

N/P log 
N/P

N/P log 
N/P



5/8

Main Problem with Naive Implementations

largest value:

log P

2nd largest value:

log P

quicksort()quicksort()quicksort()quicksort()

N/P log 
N/P

N/P log 
N/P

N/P log 
N/P

N/P log 
N/P

3rd largest value:

log P

● We must keep track of location of the 
largest element:

 MPI_Reduce(…, MPI_MAXLOC)
● We must keep track of number of local 

elements:
MPI_Reduce(…, local[lastEl])

● We must keep track of where the value 
should go:
MPI_Reduce(currentRoot, …)

● All processes need to know  the 
location:
MPI_Bcast(currentRoot, 
&maxloc)



6/8

Towards Better Parallel Sort

largest valuessmallest values

2 processes

???

4 processes

largest valuessmallest values
no invariant guaranteed



7/8

Parallel Sort Using a Median: Hyperquicksort

“higher” half/values“lower” half/values median
value

● How to select median?
1.Pick a process and value at random
2.Sort values locally and pick a local median
3.Global communication required for better median

● Keep the local values sorted
● Initial cost: � (N/P log N/P)
● Merge local old values with global new values: � (N/P)

log N

Peers exchanging data



8/8

Divisibility, Network, and Median Selection

● Ideally

– N is power of 2
● Good load balancing

– P is power of 2
● Easy to fnd partner processor at each recursion level

– Network is a hypercube
● Easy to translate logical processor numbers to physical addresses
● Bandwidth of the network grows with the network size
● Latency to send a message increases slowly with network size

● Median selection

– Local median is easy to fnd
● Local values are kept sorted

– Local median is usually not a global one
● Imagine data that is already sorted

– Bad median will create a load imbalance
● Local data is no longer power of 2
● It is costly to rebalance the load after every median


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

