COSC 462

Parallel Sorting

Piotr Luszczek

Sequential Sorting: Two Examples

- Quicksort
- $\Theta(N \log N)$
- Fast in practice
- Unstable
- Data with identical keys might end up in a different order
- Many applications require those data to retain their order
- Sensitive to median selection
- Worst case complexity is quadratic
- Using median of medians is complicated and costly
- Heap sort
- $\Theta(N \log N)$
- Slower in practice
- Building and maintaining virtual tree of data: heap
- Stable
- Worst case complexity is the same as the average case

Naive Parallel Sort (Don’t Use!)

- Partitioning is simple:
- Each process "p" gets N/P elements

Repeat for each of N elements

- Complexity
- (N/P+log P$)^{*} \mathrm{~N}=\mathrm{N}^{2} / \mathrm{P}+\mathrm{N} \log \mathrm{P}$
- Very simple implementation:
for ($e=0 ; e<N$; ++e)
MPI_Reduce (..., MPI_MAX)

Improved Naive Parallel Sort

Main Problem with Naive Implementations

quicksort()	quicksort()	quicksort()	quicksort()
$\begin{aligned} & \mathrm{N} / \mathrm{P} \log \\ & \mathrm{~N} / \mathrm{P} \end{aligned}$	$\begin{aligned} & \text { N/P } \log \\ & \text { N/P } \end{aligned}$	$\begin{aligned} & \text { N/P } \log \\ & \mathrm{N} / \mathrm{P} \end{aligned}$	$\begin{aligned} & \text { N/P } \log \\ & \mathrm{N} / \mathrm{P} \end{aligned}$
$\log P$			
largest value:			

- We must keep track of location of the largest element:
MP I_Reduce (..., MP I_MAXLOC)
- We must keep track of number of local elements:
MPI_Reduce (..., local[lastEl])
- We must keep track of where the value should go: MPI_Reduce (currentRoot, ...)
- All processes need to know the location:
MPI_Bcast (currentRoot, \&maxloc)

Towards Better Parallel Sort

Parallel Sort Using a Median: Hyperquicksort

- How to select median?
1.Pick a process and value at random

2. Sort values locally and pick a local median
3.Global communication required for better median

- Keep the local values sorted
- Initial cost: (N/P log N/P)
- Merge local old values with global new values: (N/P)

Divisibility, Network, and Median Selection

- Ideally
- N is power of 2
- Good load balancing
- P is power of 2

- Easy to find partner processor at each recursion level
- Network is a hypercube
- Easy to translate logical processor numbers to physical addresses
- Bandwidth of the network grows with the network size
- Latency to send a message increases slowly with network size
- Median selection
- Local median is easy to find
- Local values are kept sorted
- Local median is usually not a global one
- Imagine data that is already sorted
- Bad median will create a load imbalance
- Local data is no longer power of 2
- It is costly to rebalance the load after every median

