
1/8

COSC 462

OpenMP Introduction

Piotr Luszczek

October 4, 2017



2/8

OpenMP

● OpenMP is a standard
– Freely available at 

www.openmp.org
– Open Multi-Processing

● Supported languages
– C
– C++
– Fortran

● Enabled during compilation
– Intel, GNU, LLVM, …

● -fopenmp
● -fopenmp=gomp
● -fopenmp=iomp

– Visual Studio
● /openomp

● OpenMP is supported by
modern compilers
– GNU gcc, gfortran

● GOMP
– LLVM clang

● In progress
– Intel icc, ifc

● iomp library
– IBM xlc, xlf
– Cray compiler
– PGI compiler (now part of

NVIDIA): pgcc, pgfortran
– Microsoft Visual Studio

● Not in Express version in
2010

http://www.openmp.org/


3/8

OpenMP is a Threading Interface

● There are many thread APIs
– POSIX threads
– WinThreads
– Intel Threading Building Blocks (TBB)
– Cilk++
– OpenMP
– Java threads
– ...

● Most of them are free or nearly so
● A lot of documentation available

– Source code
– Examples
– Manuals
– Tutorials
– ...



4/8

Basic Premise of OpenMP

● Make development of threaded code
– Easy

● Threads are created, deployed, and destroyed with few code changes
– Incremental

● Only some parts of the code may need threading
● By default, the rest of the code runs sequentially

– Expose complex features when necessary
● Direct locking of mutex locks
● Accessing vector units
● Using accelerators



5/8

OpenMP is NOT...

● Not meant for distributed memory parallel systems (by itself)
– It is often combined with MPI

● Not implemented identically by all vendors
– Despite a lot of code reuse and sharing of ideas

● Not guaranteed to use shared memory efficiently
● Not required to check for:

– data dependencies
– data conflicts
– race conditions, or
– deadlocks

● Not required to check conformance of user code
● Not provide compiler-generated automatic parallelization and/or

directives to the compiler to assist such parallelization
● Not providing synchronous I/O to the same file when executed in

parallel
– The programmer is responsible for synchronizing I/O



6/8

History of OpenMP

● In the early 90's, vendors of shared-memory machines supplied
similar, directive-based, Fortran programming extensions.

● The user would augment a serial Fortran program with directives
specifying which loops were to be parallelized.

● The compiler would be responsible for automatically parallelizing
such loops across the SMP processors.

● Implementations were all functionally similar, but were divergent.
● First attempt at a standard was the draft for ANSIX3H5 in 1994.

– It was never adopted, largely due to waning interest as distributed
memory machines became popular.

● The OpenMP standard specification started in the spring of 1997,
taking over ANSI X3H5
– Newer shared memory machine architectures started to become

prevalent.
● Led by the OpenMP Architecture Review Board (ARB).



7/8

Goals of OpenMP

● Standardization
– Provide a standard among a variety of shared memory

architectures/platforms
● Lean and mean

– Establish a simple and limited set of directives for programming
shared memory machines

– Significant parallelism can be implemented by using just 3 or 4
directives.

● Ease of Use
– Provide capability to incrementally parallelize a serial program,

unlike message-passing libraries which typically require an all or
nothing approach

– Provide the capability to implement both coarse-grain and fine-
grain parallelism

● Portability
– Supports Fortran (77, 90, and 95, 2003), C, and C++

● Public forum for API and membership



8/8

OpenMP Release History

● 1997
– Version 1.0 for Fortran

● 1998
– Version 1.0 for C/C++

● 1999
– Version 1.1 for Fortran

● 2000
– Version 2.0 for Fortran

● 2002
– Version 2.0 for C/C++

● 2005
– Version 2.5

● 2008
– Version 3.0

● 2011
– Version 3.1

● 2013
– Version 4.0

● 2015
– Version 4.5


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

