
1/8

COSC 462

OpenMP Basics: Directive Syntax

Piotr Luszczek

October 11, 2017



2/8

Example: Largest Value (OpenMP)

#pragma omp parallel for reduction(+:sum)
for (int i=0; i<N; ++i)
  sum += X[i];

#pragma’s are compiler
directives and are not like
preprocessor directives
such as #include or
#ifdef

OpenMP created
a namespace: omp

OpenMP allows parallel
processing inside
“parallel” regions

OpenMP #pragma’s
are most often applied
to loops 

OpenMP has fast built-in
reductions based on
arithmetic, bitwise, and
logical operators

Reductions need
a target variable

OpenMP takes care
of dividing problem
size N between threads.



3/8

Separate OpenMP Pragma’s

#pragma omp parallel
{ // begin of parallel region

#pragma omp for reduction(+:sum)
for (int i=0; i<N; ++i)
  sum += X[i];

} // end of parallel region

#pragma parallel
marks a parallel region

There are a few OpenMP
pragma’s that may occur
inside a parallel region.



4/8

Running Multiple Threads

#pragma omp parallel
{ // begin of parallel region

    printf( “Hello world!\n” );

} // end of parallel region

Hello world!
Hello world!
Hello world!
...

Parallel regions don’t have to use other OpenMP pragmas.

The output may be
scrambled but each
thread will print once.



5/8

Dealing with I/O: One Thread for I/O

#pragma omp parallel
{ // begin of parallel region

    #pragma omp single
    printf( “Hello world!\n” );

} // end of parallel region

Hello world! The output will not be
scrambled and a single
thread will print once
at some point in time.



6/8

Dealing with I/O: Mutual Exclusion

#pragma omp parallel
{ // begin of parallel region

    #pragma omp critical
    {
    printf( “Hello world!\n” );
    fflush( stdout );
    }

} // end of parallel region

Hello world!
Hello world!
Hello world!
...

The output will not be
scrambled and each
thread will print once
in some order.



7/8

OpenMP Implementation Outline

● OpenMP runtime library is implemented using low-level
primitives
– POSIX threads
– WinThreads

● OpenMP-aware compiler assists in inserting additional
code that invokes the OpenMP runtime library
– At start of the program: initialize the library

● Just like MPI_Init() initializes MPI
● Every parallel region needs additional code from the

compiler, either:
– Call a separate function with the code inside the region
– Bring all the threads into the function through long_jump()

set_jump()



8/8

Two Possible Implementations

● Generated code with
separate function:
local_args.N = N;
parallelRegion01(

localArgs);
● Generated function:
static void
parallelRegion01(
struct Arg local_args)
{
  for(i=0;

i<localArgs.N/T;
++i) ...

_omp_sum(local_sum,
&sum);
}

● Generated code with
set_jump():

if (main_thread)
set_jmp(parallelReg01)
;

for (i=0;i<N/T;++i) {
  local_sum += X[i];
}
_omp_sum(local_sum,
&sum);

if (! main_thread)
long_jmp(threadsWait);

#pragma parallel


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

