COSC 462

OpenMP Basics: Directive Syntax

Piotr Luszczek

October 11, 2017 1/8

Example: Largest Value (OpenMP)

@Lpragma’s are compiler /[N 4 N
directives and are not like OpenMP allows parallel
preprocessor directives processing inside
~ 'such as #include or “parallel” regions

| OpenMP created
a namespace: onp

- \#ifdef V2N % N %
#pragma omp parallel for reduction(+:sum) Reductions need

for (int 1=0; 1<N; ++1), A a target variable

OpenMP has fast built-in

OpenMP takes care OpenMP #pragma’s reductions based on
of dividing problem are most often applied arithmetic bitwise and
size N between threads. to loops ’ ’

logical operators

2/8

Separate OpenMP Pragma’s

| #pragma parallel
//Inark351paraﬂe1regkn1

R #pragma omp parallel
{ // begin of parallel region

#pragma omp for reduction(+:sum)
for (int 1=0; i<N; ++1)
sum += X[i];

} // end of parallel region

< -

393959

277777

o
))

There are a few OpenMP |

pragma’s that may occur
inside a parallel region.

3/8

Running Multiple Threads

Parallel regions don’t have to use other OpenMP pragmas.

#pragma omp parallel
{ // begin of parallel region

printf(

} // end of parallel region

);

- Hello world!
‘\‘jHello world!
§He110 world!

The output may be
~ | scrambled but each
thread will print once.

4/8

Dealing with I/O: One Thread for I/O

#pragma omp parallel

{ // begin of parallel region >>>>>>

#pragma omp single >
printf ()i
} // end of parallel region >>>>>>
7
‘Hello worldt | [The output will not be

scrambled and a single
thread will print once

O / lat some point in time.
I 4

5/8

Dealing with 1/0: Mutual Exclusion

#pragma omp parallel
{ // begin of parallel region

#pragma omp critical

{

printf()i
fflush(stdout);

}

} // end of parallel region

277777
P\

I
2
I

~ ' Hello world!
“a Hello world!
§Hello world!

2
277777

The output will not be

, scrambled and each

thread will print once
in some order.

6/8

OpenMP Implementation Outline

 OpenMP runtime library is implemented using low-level
primitives
- POSIX threads
- WinThreads

« OpenMP-aware compiler assists in inserting additional
code that invokes the OpenMP runtime library

- At start of the program: initialize the library
 Just like MPI_Init() initializes MPI

 Every parallel region needs additional code from the
compiler, either:

- Call a separate function with the code inside the region

- Bring all the threads into the function through long_jump()
set jump()

7/8

Two Possible Implementations

#pragma parallel
 Generated code with

separate function: * Generated code with
local args.N = N; set_jump():
parallelRegion0Q1 (. .
localArgs); 1ft(ma1?_thr%%d{R 01)
« Generated function: ?e ~JApERarattEtEs
static void
parallelRegion0@1 (for (i=0;i<N/T;++1i) {
?truct Arg local args) local sum += X[i];
. } ~
for(1=0; ~omp_sum(local sum,
i<localArgs.N/T; Ssum) ;
++1) ...
_omp_sum(local_sum, if (! main_thread)
%sumT; long jmp(threadsWait);

8/8

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

