COSC 462

Parallel Algorithms

Matrix-Matrix Multiplication

Piotr Luszczek

Remarks on Divisibility

- In practice, matrix dimensions and processor counts do not divide each other
- N is not multiple of P
- Solution: padding with 0's
- New dimension $\mathrm{N}^{\prime}=\mathrm{N}+\mathrm{b}$
- Especially useful for matrix-matrix multiply because 0's don't contribute to the result
- CPUs often take shortcuts when 0's are encountered in floating-point unit
- If adding 0 's is not an option (small memory) then the cleanup code has to be provided to deal with extra items
- P is not a square of an integer
- Factor P into a shape closest to a square

$$
\text { - For example: } P=128=8^{*} 16
$$

- Advantage:
- Math equations describing the algorithm scaling will work without
- P is a prime number
- Remove one process from the pool of computing nodes and try to factor again ("leave one out" strategy)

Why Study Matrix-Matrix Multiplication?

- A lot of parallelism yet contains reductions
- Various data distributions possible
- Plenty of example algorithms and written material available
- Algorithms: Cannon (systolic), SUMMA, PUMMA, 3D, 2.5D
- Separate algorithms can be developed for network topologies
- Hypercube (SGI)
- Fat-tree (Infiniband)
- Dragonfly (Cray)
- Torus (Tofu, K computer)
- Applications
- Computational chemistry (change of basis for Hamiltonian)
- Signal processing
- Plasma containment physics
- Tokamak design
- github.com/ORNL-Fusion/aorsa2d

Definition and Observations

- Matrix notation

$$
-C=A * B
$$

$\mathrm{A}, \mathrm{B}, \mathrm{C} \in \mathbf{R}^{\mathrm{N} *}$

- Element-wise
- $c_{i j}=\sum a_{i k} b_{k j}$

- Code

```
- for \((i=0 ; i<N i++i)\)
```



```
c[i][j] += a[i][k] * b[k][j]
```

- Observations:
- A lot of work, little input/output data
- Complexity $(\mathrm{N})=2 \mathrm{~N}^{3}+\Theta\left(\mathrm{N}^{2}\right)$
- Data $(\mathrm{N})=3 \mathrm{~N}^{2}+\Theta(\mathrm{N})$
- We call it: surface to volume effect
- Parallelism abounds
- The loops can be interchanged
- Summation can use any variant of efficient reduction

Attempt 1: Single-element Tasks

- Tasks
- N^{3} compute tasks $\mathrm{t}_{\mathrm{i}, \mathrm{j}, \mathrm{k}}: \mathrm{c}_{\mathrm{i}, \mathrm{j}}{ }^{(\mathrm{k})}=\mathrm{a}_{\mathrm{i}, \mathrm{k}} \mathrm{b}_{\mathrm{k}, \mathrm{j}}$

- N^{2} reduction tasks $\mathrm{r}_{\mathrm{i}, \mathrm{j}}: \Sigma_{\mathrm{k}} \mathrm{C}_{\mathrm{i}, \mathrm{j}}{ }^{(k)}$
- Data partitioning
- Elements of C don't need to be replicated
- Elements of A and/or B must be replicated or communicated
- a1,1 is needed by c1,* and c*,1 (N+N tasks)
- Must agglomerate to decrease message count

Attempt 2: Rowwise Agglomeration

- Rows of B have to be communicated:
- for (i = 0; $i<N$ i ++i) sendrecv((self+1) \% P, (self-1+P) \% P, B[i][:])
- Each processor must exchange N messages
- Total: ${ }^{*} \mathrm{~N}$ e $\Theta\left(\mathrm{N}^{2}\right)$
- Computation to communication ratio
- 2N³ computations on P processors: 2N3/P
- Entire B is communicated: N^{2}
- Ratio: 2N/P
- The ratio is very small (bad)
- The problem needs to grow linearly with number of processors

Attempt 3: Cannon’s Algorithm

- Main idea:
- Use 2D processor grid and 2D partitioning of the matrix
- Computation to communication ratio
- Computation for a single processor: 2 * $N / \sqrt{ } P^{*} N / \sqrt{ } P^{*} N$
- Communication to send the data to a processor: $2^{*} \mathrm{~N} / \sqrt{ } \mathrm{P}^{*} \mathrm{~N}$
- Ratio: N/JP
- Compare to N/P for rowwise agglomeration

Beware of Sequential Performance

Matrix-Matrix Multiply on Intel Pentium III 933 MHz L2 256 KB

Element-wise vs. Block-wise vs Recursive

Amdahl Law: Sequential Performance Matters

- The reference (sequential) performance for computing Amdahl fraction must be optimized
- Slow sequential performance is bad because
- Gives a false sense of scalability
- Makes communication look slow compared to computation
- Creates superlinear scalability when there is none
- Gives the wrong basis for comparing between different hardware and (sequential/parallel) algorithms
- My machine is better because scaling is better
- My algorithm is better because it scales better

