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Finite Difference Methods and PDEs

● Finite Difference Methods are commonly used to solve PDEs

● PDEs are used in many applications

– Computational Fluid Dynamics
● Water and gas fow
● Multi-scale models

– Weather prediction
– Structural mechanics

● Deformations of rigid structures
– Wave propagation

● Acoustics
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Approximating Derivative with Finite Difference

f '(x)=
f (x+h /2)− f (x−h /2)

h +O(h2)

f ' '(x )=
f ' (x+h /2)− f ' (x−h /2)

h +O(h2)

f ' '(x )≈
f (x+h)−2 f (x)+f (x−h)

h2

f (x )

f (x+h
2 )f (x− h

2 )

x− h
2 x+h

2
x

f ' ( x )

● The formulas above assume that:
● function f() is continuous, and
● so is its derivative f’()
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Sample PDE: Poisson Equation

● Poisson equation has a simple form in 2D

– u
xx

+u
yy

=f(x,y)

● Applications include

– Electricity

– Magnetism

– Gravity

– Heat distribution

– Fluid fow

– Torsion
● When f(x,y)=0 we call it Laplace equation

uxx=
∂2 u

∂ x ∂ x ≈
u(x+h , y)−2 u(x , y)+u(x−h , y)

h2
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Mapping Formulas to Geometry

ui , j

ui , j+1

ui+1 , j

ui−1 , j

ui , j−1

uxx≈
ui−1 , j−2ui , j+ui+1 , j

h2

uyy≈
ui , j−1−2 ui , j+ui , j+1

h2

ui , j , k

ui , j+1 , k

ui+1 , j , k

ui−1 , j , k

ui , j−1 , k

and in 3D...
ui , j , k+1

ui , j , k−1

uxx+uyy+uzz= f (x , y , z)

In 2D...

xy

xy

z
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Iterating Towards Steady-State

ui−1 , j−2ui , j+ui+1 , j

h2 +
ui , j−1−2ui , j+ui , j+1

h2 = f i , j
Start with ui,j estimates

ui−1 , j−2ui , j+ui+1 , j

h2 +
ui , j−1−2ui , j+ui , j+1

h2 = f i , j

ui−1 , j−2 ui , j+ui+1 , j

h2 +
ui , j−1−2ui , j+ui , j+1

h2 = f i , j

ui−1 , j−2 ui , j+ui+1 , j

h2 +
ui , j−1−2ui , j+ui , j+1

h2 = f i , j
Steady-state with f inal 
values of  ui,j
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Meshes: Partitioning and Agglomeration

Computation:

� (N2/P)

Communication (N by N mesh):

� (N)

Computation:

� (N/� P * N/� P) = � (N2/P)

Communication (N by N mesh):

� (N/� P)
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Implementation: Ghost Cells

compute

exchange

compute

1. Compute on local cells
2. Compute on ghost cells
3. Exchange ghost cells
4. If not converged GOTO 1

This is usually combined in a 
clever implementation
Communication is local
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Details: Divisibility, Numerics, Mesh Refnement

● Divisibility

– More complex math (no simple way to pad to N+k)
● We have to tolerate slight imbalance

– Still want square processor grid
● Might need to leave processors off for good prime factors

● Numerical issues

– Convergence is a more complicated math problem
● Need continuous boundary conditions etc.

– More complicated PDEs and local solvers are a necessity
● Mesh structure

– It does not always make sense to have uniform mesh

– The mesh might change as computation proceeds
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Mesh and Its Adjacency Matrix

1

2

3

4

5

6

7

8

1    2    3    4   5    6    7   8       1,1   2,1  3,1  4,1  5,1  6,1, 7,1  8,1   1,2  2,2   3,2

1,1  -4     1     0     0     0     0     0     0     1     0       0

2,1   1     -4    1     0     0     0     0     0     0     1       0

3,1   0      1    -4    1     0     0     0     0     0     0       1

4,1   0      0     1    -4    1     0     0     0     0     0       0

N

Natural ordering
(other orderings possible:
red-black, nested dissection, 
Cuthill-McKee, ...)

Adjacency matrix is 
sparse:

N2
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