
1/10

COSC 462

Finite Difference Methods

Piotr Luszczek

September 22, 2017

2/10

Finite Difference Methods and PDEs

● Finite Difference Methods are commonly used to solve PDEs

● PDEs are used in many applications

– Computational Fluid Dynamics
● Water and gas fow
● Multi-scale models

– Weather prediction
– Structural mechanics

● Deformations of rigid structures
– Wave propagation

● Acoustics

3/10

Approximating Derivative with Finite Difference

f '(x)=
f (x+h /2)− f (x−h /2)

h +O(h2)

f ' '(x)=
f ' (x+h /2)− f ' (x−h /2)

h +O(h2)

f ' '(x)≈
f (x+h)−2 f (x)+f (x−h)

h2

f (x)

f (x+h
2)f (x− h

2)

x− h
2 x+h

2
x

f ' (x)

● The formulas above assume that:
● function f() is continuous, and
● so is its derivative f’()

4/10

Sample PDE: Poisson Equation

● Poisson equation has a simple form in 2D

– u
xx

+u
yy

=f(x,y)

● Applications include

– Electricity

– Magnetism

– Gravity

– Heat distribution

– Fluid fow

– Torsion
● When f(x,y)=0 we call it Laplace equation

uxx=
∂2 u

∂ x ∂ x ≈
u(x+h , y)−2 u(x , y)+u(x−h , y)

h2

5/10

Mapping Formulas to Geometry

ui , j

ui , j+1

ui+1 , j

ui−1 , j

ui , j−1

uxx≈
ui−1 , j−2ui , j+ui+1 , j

h2

uyy≈
ui , j−1−2 ui , j+ui , j+1

h2

ui , j , k

ui , j+1 , k

ui+1 , j , k

ui−1 , j , k

ui , j−1 , k

and in 3D...
ui , j , k+1

ui , j , k−1

uxx+uyy+uzz= f (x , y , z)

In 2D...

xy

xy

z

6/10

Iterating Towards Steady-State

ui−1 , j−2ui , j+ui+1 , j

h2 +
ui , j−1−2ui , j+ui , j+1

h2 = f i , j
Start with ui,j estimates

ui−1 , j−2ui , j+ui+1 , j

h2 +
ui , j−1−2ui , j+ui , j+1

h2 = f i , j

ui−1 , j−2 ui , j+ui+1 , j

h2 +
ui , j−1−2ui , j+ui , j+1

h2 = f i , j

ui−1 , j−2 ui , j+ui+1 , j

h2 +
ui , j−1−2ui , j+ui , j+1

h2 = f i , j
Steady-state with f inal
values of ui,j

7/10

Meshes: Partitioning and Agglomeration

Computation:

� (N2/P)

Communication (N by N mesh):

� (N)

Computation:

� (N/� P * N/� P) = � (N2/P)

Communication (N by N mesh):

� (N/� P)

8/10

Implementation: Ghost Cells

compute

exchange

compute

1. Compute on local cells
2. Compute on ghost cells
3. Exchange ghost cells
4. If not converged GOTO 1

This is usually combined in a
clever implementation
Communication is local

9/10

Details: Divisibility, Numerics, Mesh Refnement

● Divisibility

– More complex math (no simple way to pad to N+k)
● We have to tolerate slight imbalance

– Still want square processor grid
● Might need to leave processors off for good prime factors

● Numerical issues

– Convergence is a more complicated math problem
● Need continuous boundary conditions etc.

– More complicated PDEs and local solvers are a necessity
● Mesh structure

– It does not always make sense to have uniform mesh

– The mesh might change as computation proceeds

10/10

Mesh and Its Adjacency Matrix

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 1,1 2,1 3,1 4,1 5,1 6,1, 7,1 8,1 1,2 2,2 3,2

1,1 -4 1 0 0 0 0 0 0 1 0 0

2,1 1 -4 1 0 0 0 0 0 0 1 0

3,1 0 1 -4 1 0 0 0 0 0 0 1

4,1 0 0 1 -4 1 0 0 0 0 0 0

N

Natural ordering
(other orderings possible:
red-black, nested dissection,
Cuthill-McKee, ...)

Adjacency matrix is
sparse:

N2

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

