

Finite Difference Methods

Piotr Luszczek

September 22, 2017

1/10

Finite Difference Methods and PDEs

- Finite Difference Methods are commonly used to solve PDEs
- PDEs are used in many applications
 - Computational Fluid Dynamics
 - Water and gas flow
 - Multi-scale models
 - Weather prediction
 - Structural mechanics
 - Deformations of rigid structures
 - Wave propagation
 - Acoustics

Approximating Derivative with Finite Difference

- The formulas above assume that:
 - function f() is continuous, and
 - so is its derivative f'()

Sample PDE: Poisson Equation

• Poisson equation has a simple form in 2D

$$- U_{xx} + U_{yy} = f(x,y)$$

- Applications include
 - Electricity
 - Magnetism
 - Gravity
 - Heat distribution
 - Fluid flow
 - Torsion
- When f(x,y)=0 we call it Laplace equation

$$u_{xx} = \frac{\partial^2 u}{\partial x \partial x} \approx \frac{u(x+h, y) - 2u(x, y) + u(x-h, y)}{h^2}$$
4/10

Mapping Formulas to Geometry

Iterating Towards Steady-State

Meshes: Partitioning and Agglomeration

Computation:

(N²/P)

(N)

Communication (N by N mesh):

Computation:

 $(N/P * N/P) = (N^2/P)$

Communication (N by N mesh): (N/ P)

Implementation: Ghost Cells

Compute on local cells
 Compute on ghost cells
 Exchange ghost cells
 If not converged GOTO 1

This is usually combined in a clever implementation Communication is local

Details: Divisibility, Numerics, Mesh Refinement

- Divisibility
 - More complex math (no simple way to pad to N+k)
 - We have to tolerate slight imbalance
 - Still want square processor grid
 - Might need to leave processors off for good prime factors
- Numerical issues
 - Convergence is a more complicated math problem
 - Need continuous boundary conditions etc.
 - More complicated PDEs and local solvers are a necessity
- Mesh structure
 - It does not always make sense to have uniform mesh
 - The mesh might change as computation proceeds

Mesh and Its Adjacency Matrix

