COSC 462

Fast Fourier Transform

Piotr Luszczek

FFT Applications

- Image processing
- Compression
- Filtering
- Signal analysis
- Compression
- Filtering
- Transformation
- Electronic structure calculation
- 3D FFT
- Deep learning
- Convolutional Neural Networks
- Related problems
- Polynomial multiplication
- Convolutions

FFT: Continuous Case

Time Domain

Frequency Domain

FFT: Continuous and Discrete Formulas

$$
\begin{aligned}
& F(f)=\int_{-\infty}^{+\infty} f(t) \mathrm{e}^{-i 2 \pi t} d t \\
& y_{k}=\sum_{n=0}^{N-1} x_{n} e^{-i 2 \pi k n / N} \quad y=W x=\left[\begin{array}{cccc}
\omega_{n}^{0 \times 0} & \omega_{n}^{0 \times 1} & \omega_{n}^{0 \times 2} & \ldots \\
\omega_{n}^{110} & \omega_{n}^{1 \times 1} & \omega_{n}^{112} & \ldots \\
\omega_{n}^{2 \times 0} & \omega_{n}^{2 \times 1} & \omega_{n}^{2 \times 2} & \ldots
\end{array}\right] x
\end{aligned}
$$

$$
x_{n}=\frac{1}{N} \sum_{k=0}^{N-1} y_{k} e^{i 2 \pi k n / N}
$$

$$
\omega_{n}=e^{i \frac{2 \pi}{n}}=\cos \left(\frac{2 \pi}{n}\right)+\sin \left(\frac{2 \pi}{n}\right)
$$

Computational and Complexity Considerations

- Discrete Fourier Transform and inverse transform is a matrixvector multiply (the matrix is symmetric)
- Complexity: $\Theta\left(\mathrm{N}^{2}\right)$
- Matrix entries come from evaluation of transcendental functions
- Very costly if implemented in software
- Order of magnitude slower than add/multiply if done in hardware
- The transform matrix has a (recursive) structure
- This observation leads to Fast Fourier transform
- Complexity: $\Theta(N \log N)$
- Values from transcendental functions can be build incrementally

Data Transfer Pattern: Butterfly

Partitioning, Agglomeration, and Mapping

Remaining Details: Divisibility, Padding, Caches

- Textbooks often deal with input/output vectors as powers of 2
- $N=2^{m}$
- $P=2^{t}$
- Modern memory hierarchy (caches, TLB) and structure (cache lines, pages, cache associativity) is constructed on powers of 2
- Cache line $=32$ or 64
- TLB page $=2^{12}$ or 2^{20}
- Accessing data in power-of-2 stride is sub-optimal
- Padding to power of 2 is trivial but wastes a lot memory
- Modern libraries include specialized code for other powers
- $2^{n}, 3^{m}, 5^{\mathrm{k}}, 7^{\mathrm{i}}, 11^{\mathrm{j}}, 13^{\mathrm{x}}$
- Processors count P has to divide N
- FFT algorithm for prime-number length exists...
- But better performance can be achieved with padding

