
1/12

COSC 462

CUDA Programming: Thread Scheduling

Piotr Luszczek

November 3, 2017

2/12

Thread Identifcation

● POSIX threads
– pthread_t tid = pthread_self();

● MPI
– MPI_Comm_rank(comm, &rank);

– MPI_Comm_size(comm, &size);
● OpenMP

– int tid = omp_get_thread_num();

– int all = omp_get_num_threads();
● CUDA

– int blkid = blockIdx.x + (blockIdx.y + blockIdx.z
* gridDim.y) * gridDim.x

– int inside_blk_tid = threadIdx.x + (threadIdx.y +
threadIdx.z * blockDim.y) * blockDim.x

3/12

GPU Optimization: Target the Hardware

Control,
scheduling, ...

ALU ALU

ALU ALU

Cache

DRAM

GDDR

PCIe Bus

More complex Less complex CUDA softwareSequential
software

4/12

Matrix Summation: CPU

float A[n][n], B[n][n], C[n][n];

/* note the order of the loops */
for (int i=0; i<n; ++i)
 for (int j=0; j<n; ++j)
 C[i][j] = A[i][j] + B[i][j];
 // row-major order

5/12

Matrix Summation: GPU Kernel

__global__ void matrix_sum(float *A, float *B,
float *C, int m, int n) {
 int x = threadIdx.x + blockIdx.x * blockDim.x;
 int y = threadIdx.y + blockIdx.y * blockDim.y;

 if (x < m && y < n) {
 int ij = x + y*m; // column-major order
 C[ij] = A[ij] + B[ij];
 }
}

6/12

Matrix Summation: GPU Launching (Slow!)

// optimization: copy data outside of the loop
cudaMemcpy(dA,...);
cudaMemcpy(dB,...);
for (int i=0; i<n; ++i)
 for (int j=0; j<n; ++j) {
 int ij = i + j*n; // column-major order
 matrix_sum<<<1,1>>>(dA+ij, dB+ij, dC+ij, 1,1);
 // problem: kernel launch overhead 1-10 ms
 }
cudaMemcpy(hC,dC,...);

7/12

Matrix Summation: Faster Launching

● Kernel launch for every row
for (int i=0; i<n; ++i)
 matrix_sum<<1,n>>(dA+i, dB+i, dC+i, 1,n);

● Kernel launch for every column
for (int j=0; j<n; ++j)
 int k = j*n;
 matrix_sum<<n,1>>(dA+k, dB+k, dC+k, n,1);

● Kernel launch for all rows and columns at once
matrix_sum<<n,n>>(dA, dB, dC, n,n);
– Single point to incur kernel-launch overhead

– Might run into hardware limits on threads, thread blocks,
and their dimensions

8/12

Ordering Matrix Elements in Memory

Row-major order in C/C++ Column-major order in Fortran

A + 0x0

A + 0x40

A + 0x80

A + 0xC0

A + 0x100

A + 0x0
A + 0x4
A + 0x8
A + 0xC
A + 0x10
A + 0x14

9/12

Mapping Threads to Matrix Elements

t
h
r
e
a
d
I
d
x
.
y

+

b
l
o
c
k
I
d
x
.
y

*

b
l
o
c
k
D
i
m
.
y

threadIdx.x + blockIdx.x * blockDim.x

10/12

Scheduling Thread on a GPU
● Programming model for GPUs is SIMT

– Many threads (ideally) execute the same instruction on
diferent data

– Performance drops quickly if threads don’t execute the
same instruction

● Basic unit of scheduling is called a warp
– The size of warp is (and has been) 32 threads

– If one of the threads in a warp stalls then entire warp is de-
scheduled and another warp is picked

– Threads are assigned to warp with x-dimension changing
fastest

● Some operations can only be performed on half-warp
– Some GPU cards only have 16 load/store units per SM

– Each half-warp in a full warp will be scheduled to issue a
load one after the other

11/12

Mapping Threads In a Block to Warps
threadIdx.x=0

threadIdx.x=31

Remaining threads in the
block will be mapped to an
incomplete warp.
This is inefcient and
incomplete warps should be
avoided.

warp 0

threadIdx.x=32

12/12

GPU Warp Scheduling Details

● GPU has at least one warp scheduler per SM
– With newer GPU hardware cards, this number increases

● The scheduler picks an eligible warp and executes all
threads in the warp

● If any of the threads in the executing warp stalls
(uncached memory read, etc.) the schedule makes it
inactive

● If there are no eligible warps left then GPU idles
● Context switch between warps is fast

– About 1 or 2 cycles (1 nano-second on 1 GHz GPU)

– The whole thread block has resources allocated on an SM
(by the compiler) ahead of time

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

