Advanced MP]

George Bosilca

Nonblocking and collective communications

* Nonblocking communication
* Prevent deadlocks related to message ordering

* Overlapping communication/computation

* If communication progress is provided by the
implementation/hardware

* Collective communication

* Collection of pre-defined routines for generalist
communication patterns
* Optimized by the implementations

* Nonblocking collective communication
 Combines both advantages

 System noise/imbalance resiliency
e Semantic advantages

Nonblocking communications

e Semantics are simple:
* Function returns immediately

» Buffers should be used carefullyésend buffers can be read but
not modified, recv buffers should not be accessed)

* No requirement for progress (more complicated than point-to-
point communications)

e E.g.: MPI_Isend(..., MPl_Request *req);

* Nonblocking tests:
* Test, Testany, Testall, Testsome

* Blocking wait:
* Wait, Waitany, Waitall, Waitsome

* Blocking vs. nonblocking communication

* Mostly equivalent, nonblocking has constant request
management overhead

* Nonblocking may have other non-trivial overheads

Nonblocking communications

* An important technical detail
* Eager vs. Rendezvous

rest of data

* Most/All MPls switch protocols

* Small messages are copied to internal remote buffers
* And then copied to user buffer
* Frees sender immediately (cf. bsend)
e Usually below MTU

* Large messages divided in multiple pieces

* wait until receiver is ready to prevent temporary memory
allocations on the receiver due to unexpected communication

* Blocks sender until receiver arrived

* Hint: in many cases you can tune these limits (for your
environment) and your application

* Not only for performance reasons but also to minimize the
memory used by the MPI library (for internal storage)

Software Pipelining - Motivation

if(0 ==rank) {
for(inti=0;i< MANY; i++) {
buf[i] = compute(buf, size, i);
}
MPI_Send(buf, size, MPI_DOUBLE, 1, 42, comm);

} else {
MPI_Recv(buf, size, MPI_DOUBLE, 0, 42, comm, &status);

compute(buf, size);

}

CPU
Process O network |
|

NN\

I
Process1 network |

I

1

time
>

cost -

P a
<

'I

Software Pipelining - Implementation

MPI_Request req = MPI_REQUEST_NULL;
if(0 == rank) {
for(int b =0; b < (size / BSIZE); b++) {
MPI_wait(req, &status); /* complete previous step */
for(inti=b * BSIZE; i < ((b+1) * BSIZE); i++)
buf[i] = compute(buf, size, i);
MPI_Isend(&buf[b * BSIZE], BSIZE, MPI_DOUBLE, 1, 42, comm, &req);
}
} else {
for(int b =0; b < (size / BSIZE); b++) {
MPI_Recv(&buf[b*BSIZE], BSIZE, MPI_DOUBLE, 0, 42, comm, &status);
compute(&buf[b*BSIZE], BSIZE);

}
}
CPU |
ProcessO network 1 | _
| | time
| | >
Process1 network 1 \. |
I What if the computation is more
CPU :
l expensive than the
|

communication ?
original cost

Software Pipelining - Implementation

MPI_Request req = MPI_REQUEST_NULL;
if(0 == rank) {
for(int b =0; b < (size / BSIZE); b++) {
MPI_wait(req, &status); /* complete previous step */
for(inti=b * BSIZE; i < ((b+1) * BSIZE); i++)
buf[i] = compute(buf, size, i);
MPI_Isend(&buf[b * BSIZE], BSIZE, MPI_DOUBLE, 1, 42, comm, &req);
}
} else {
for(int b =0; b < (size / BSIZE); b++) {
MPI_Recv(&buf[b*BSIZE], BSIZE, MPI_DOUBLE, 0, 42, comm, &status);
compute(&buf[b*BSIZE], BSIZE);

}

}
CPU

Process O network

time
>

computation more expensive
than the communication

CPU

I
I
I
Process 1 network 1
I
I
I

Software Pipelining - Implementation

MPI_Request req[2] = {MPI_REQUEST_NULL};
if(0 == rank) {
/* keep the same send code */
} else {idx = 0;
MPI_Irecv(&buf[0*BSIZE], BSIZE, MPI_DOUBLE, 0, 42, comm, &req[idx]);
for(int b =0; b < (size / BSIZE); b++) {
MPI_Wait(&req[idx], &status);
if((b+1)*BSIZE < size) { idx = (idx + 1) % 2;
MPI_Irecv(&buf[(b+1)*BSIZE], BSIZE, ..., comm, &req[idx]); }
compute(&buf[b*BSIZE], BSIZE);

}
}

CPU
Process O network

time
>

. B
I
]
Process 1 network 1
I
CPU I than the communication
I

| computation more expensive

Software pipelining - modelization

* No pipeline

* T Tcomp(s) + comm(s) + startc(s) + T comp()
* Pipeline
° T Tcom (bS) + Tcomm(bs) + Ttartc(bs) +

nblocks Max(Teomno(05), Teomm(0s), Toarc(bS), T omp(bS))

CPU
Process O network

|t|me

‘H-

I

|

I

Process1 network 1
CPU ;

I

Communicators - Collectives

* Simple classification by operation class

* One-To-All (simplex mode)
* One process contributes to the result. All processes receive the result.
* MPI_Bcast
* MPI_Scatter, MPI_Scatterv

* All-To-One (simplex mode)
* All processes contribute to the result. One process receives the result.

* MPI_Gather, MPI_Gatherv
* MPI_Reduce

* All-To-All (duplex mode)

* All processes contribute to the result. All processes receive the result.
* MPI_Allgather, MPI_Allgatherv
* MPI_Alltoall, MPI_Alltoallv
* MPI_Allreduce, MPI_Reduce_scatter

* Other
* Collective operations that do not fit into one of the above categories.
* MPI_Scan
* MPI_Barrier

* Common semantics:
* Blocking semantics (return when complete)
* Therefore no tags (communicators can serve as such)
* Not necessarily synchronizing (only barrier and all*)

Collective Communications

* Most algorithms are log(P)

* They classify in 3 major
communication patterns

e Scatter, Gather, Reduce

ﬁ O
* Barrier, AllReduce, Allgather, Alltoall
C@j e Scan, Exscan

Nonblocking collectives

* Nonblocking variants of all collectives
 MPI _Ibcast(..., MPI_Request *req);

* Semantics:
* Function returns no matter what
* No guaranteed progress (quality of implementation)
e Usual completion calls (wait, test) + mixing
* Out-of order completion

* Restrictions:
* No tags, in-order matching

* Send and vector buffers may not be touched during
operation

 MPI_Cancel not supported
* No matching with blocking collectives

Nonblocking collectives

e Semantic advantages:

* Enable asynchronous progression (and manual)
» Software pipelining

* Decouple data transfer and synchronization
* Noise resiliency!

* Allow overlapping communicators
» See also neighborhood collectives

* Multiple outstanding operations at any time
* Enables pipelining window

e Complex progression

 MPI’s global progress rule!
* Higher CPU overhead (offloading?)

» Differences in asymptotic behavior
* Collective time often
* Computation
* Performance modeling (more complicated than for blocking)
* One term often dominates and complicates overlap

Topologies and Neighborhood

Naive Mapping Optimized Mapping
node 0 node 2 node 0 node 2
© e | @ ©) L | ®
@ @ Topomap 9 G

3055 N 5800 AP
node 1 node 3 node 1 node 3
1869 0 651 0
0 0 Courtesy to Torsten Hoefler

* Rank reordering (transform the original, resource manager
provided allocation) and map the processes on it based on
the communication pattern

MPI topologies support

* MPI-1: Basic support Convenience functions
* Create and query a graph
e Useful especially for Cartesian topologies
* Query neighbors in n-dimensional space
* Non-scalable: the graph knowledge must be global as each
rank must specify the full graph
MPI-2.2: Scalable Graph topology
 Distributed Graph: each rank specifies its neighbors or
arbitrary subset of the graph
MPI-3.0: Neighborhood collectives

* Adding communication functions defined on graph topologies
(neighborhood of distance one)

Cartesian topology creation

* Specify ndims-dimensional topology
* Optionally periodic in each dimension (Torus)

* Some processes may return MPI_COMM _NULL
* Product sum of dims must be <= P

* Reorder argument allows for topology mapping

* Each calling process may have a new rank in the created
communicator

* Application must adapt to rank changing between the old and
the new communicator, i.e. data must be manually remapped

* MPI provides support for creating the dimensions array
(“square” topologies via MPI_Dims_create)
* Non-zero entries on the dims array will not be changed

MPI_Cart_create(MPl_Comm old_comm,
int ndims, const int*dims, const int *periods,
int reorder, MPI_Comm *comm)

MPI_Dims_create(int nnodes, int ndims, int *dims)

Graph Creation
* nnodes is the total number of nodes in the graph

* index|i] stores the total number of neighbors for
the first i nodes (sum)
* Acts as offset into edges array

» edges stores the edge list for all processes
* Edge list for process j starts at index[j] in edges
* Process j has index[j+1]-index]j] edges

* Each process must know the entire topology
* Not scalable

MPI_Graph_create(MPl_Comm comm_old, int nnodes,
const int *index, const int *edges, int reorder,

MPI_Comm *comm_graph)

Distributed grap

* Scalable, allows distri

N creation

outed graph specification

* Each nodes specifies either the local neighbors or any
edge in the graph (knowledge is now globally

distributed)
* Specify edge weights

* Optimization opportunity for reordering despite the fact
that the meaning is undefined

* Each edge must be specified twice, once as out-edge (at
the source) and once as in-edge (at the dest)

* Info arguments

 Communicate assertions of semantics to the MPI library
e E.g., semantics of edge weights

Distributed graph creation

MPI_Dist_graph_create_adjacent(MPl_Comm old_comm
int indegree, const int sources|], const int sourceweights(],
int outdegree, const int destinations|[], const int destweights]],

MPI _Info info, int reorder, MPI_Comm *comm_dist_graph)

* n—number of source nodes

* sources — n source nodes

* degrees — number of edges for each source

* destinations, weights — dest. processor specification
* info, reorder — as usual

* MPI_Dist_graph_create requires global communications to redistribute
the information (as each process will eventually need to know it’s
neighbors)

A

MPI_Dist_graph_create(MPI_Comm comm_old, int n,
const int sources|[], const int degrees|], const int destinations[],
const int weights[], MPI_Info info, int reorder,

MPI_Comm®*comm_dist_graph)

Example: distributed graph creation

indegree
sources
outdegree

destinations

PO
{0}
{}
{2}
{1, 3}

P1
{2}
{0, 4}
{1}
{2}

* MPI_Dist_graph create_adjacent

P2
3}
{1,3,4}
{1}

3}

P3
3}
{0, 2, 4}
{1}
{2}

P4
{0}

0

3)

{1, 2, 3}

* MPI_Dist_graph_create

The order is not important,
but it must reflect on how the
topology will be used

Define the buffers order

in the neighborhood

collectives
MPI_Dist_graph_create can be
any permutation of the same
edges representation

Distributed Graph query functions

e Query information (the number of neighbors and
the neighbors) about the calling process

 MPI_Dist_graph_neighbors_count return counts for the
indegree, outdegree and weight.

MPI_Dist_graph_neighbors_count(MPI_Comm comm,

int *indegree, int *outdegree, int *weighted)
MPI_Dist_graph_neighbors(MPl_Comm comm,

int maxindegree, int sources|[], int sourceweights|],

int maxoutdegree, int destinations|[],int destweights|])

PO P1 P2 P3 P4
indegree | {0} {2} {3} {3} {0}
sources | {} {0,4} |1{1,3,41]1{0,2,4} | {}
outdegree | {2} {1} {1} {1} {3}
destinations | {1, 3} {2} {3} {2} {1,2,3}

MPI_Dist_graph_neighbors_count MPI_Dist_graph_neighbors

Neighborhood Collectives

* Collective communications over topologies

* They are still collective (all processes in the
communicator must do the call, including processes
without neighbors)

e Buffers are accessed in the neighbors sequence

* Order is determined by order of neighbors as returned by the
corresponding query functions ([dist_]graph_neighbors).

* Defined by order of dimensions, first negative, then positive
e Cartesians 2*ndims sources and destinations

* Distributed graphs are directed and may have different
numbers of send/recv neighbors

* Processes at borders (MPI_PROC_NULL) leave holes in buffers
(will not be updated or communicated)!

* Every process is root in its own neighborhood (!)

MPI Neighbor allgather

* Each process send the same message to all
neighbors (the sendbuf)

* Each process receives indegree messages, one from
each neighbors in their corresponding order from
the query functions

e Similar to MPI_gather where each process is the
root on the neighborhood

e Despite the fact that name starts with all

MPI_Neighbor_allgather(
const void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int recvcount, MPI_Datatype recvtype,
MPI_Comm comm)

MPI Neighbor allgather

MPI_Neighbor_allgather(

const void* sendbuf, int sendcount, MPI_Datatype sendtype,

void* recvbuf, int recvcount, MPI_Datatype recvtype,

MPI_Comm comm)

indegree
sources
outdegree

destinations

PO
{0}
{}
{2}
{1,3}

P3
3}
{0,2,4}
{1}

{2}

P4
(o}

0

3}

{1, 2, 3}

Nonblocking versions

* Full support for all nonblocking neighborhood
collectives
e Same collective invocation requirement

* Matching will be done in order of the collective post for
each collective

* As each communicator can only have a single topology

* Think about the Jacobi where the communications
are done with neighbor collectives

One-sided communications

* In MPI we are talking about epoch: a window of
memory updates

Somewhat similar to memory transactions
Everything in an epoch is visible at once on the remote peers
Allow to decouple data transfers and synchronizations

e Terms:

Origin process: Process with the source buffer, initiates the
operation

Tar%et process: Process with the destination buffer, does not
explicitly call communication functions

Epoch: Virtual time where operations are in flight. Data is
consistent after new epoch is started.

* Access epoch: rank acts as origin for RMA calls

* Exposure epoch: rank acts as target for RMA calls

Ordering: only for accumulate operations: order of messages
between two processes (default: in order, can be relaxed)

Assert: assertions about how the one sided functions are
used, “fast” optimization hints, cf. Info objects (slower)

Overview

* Window creation

* Static
* Expose allocated memory: MPI_Win_create
* Allocate and expose memory: MPI_Win_allocate

* Dynamic
* MPI_Win_create_dynamic
* Communications
* Data movements: Put, Rput, Get, Rget

* Accumulate (acc, racc, get_acc, rget_acc)
* Atomic operations (fetch&op, compare and swap)

* Synchronizations
» Active: Collective (fence); Group
 Passive: P2P (lock/unlock); One epoch (lock _all)

Memory Exposure

e Collective calls (attached to a communicator)

* Info
* no_locks — user asserts to not lock win
e accumulate_ordering — comma-separated rar, war, raw, waw

e accumulate_ops — same_op or same_op_no_op (default) —
assert used ops for related accumulates

* same_size — if true, user asserts that size is identical on all
calling processes (only for MP1_Win_allocate)

* MPI_Win_allocate is preferred, as the implementation
is allowed to prepare the memory (pinning and co.)

* MPI_Win_free will free the memory allocated by the
MPI Tibrary (special care for MPI_Win_allocate)

MPI_Win_create(void *base, MPI_Aint size, int disp_unit,
MPI_Info info, MPI_Comm comm, MPI_Win *win)
MPI_Win_allocate(MPI_Aint size, int disp_unit, MPI_Info info,
MPI_Comm comm, void *baseptr, MPl_Win *win)
MPI_Win_create_dynamic(MPI_Info info, MPI_Comm comm, MPIl_Win *win)

MPI Win_ attach(MPI_Win win, void *base, MPI_Aint size)

MPI_ Win_ detach(MPI_Win win, const void *base)
MPI_Win_free(MPIl_Win *win)

One Sided communications

* Put and Get have symmetric behaviors

* Nonblocking, they will complete at the end of the
epoch

* Conflicting accesses (for more than one byte) are
allowed, but their outcome is undefined

* The request based version can be waited using any MPI
completion mechanism (MPIl_Test* or MPI_Wait*)

e Similarly to MPI_Send completion of the request only
has a local meaning
* GET: the data is stored in the local buffer

* PUT: The local buffer can be safely reused (no remote
completion)

MPI_Put(const void *origin_addr, int origin_count, MPI_Datatype origin_datatype,
int target_rank, MPI_Aint target_disp, int target_count, MPI_Datatype target_datatype,
MPI_Win win)

MPI_Rput(..., MPI_Request *request)

One Sided Accumulate

e Atomic update of remote memory based on a
combination of the existing data and local data

e Except if OP is MPI_REPLACE (when it is equivalent to
MPI1_Put)

* Non overlapping entries at the target (because memory
consistency and ordering accesses

* MPI_Get_accumulate similar behavior to fetch_and_*
operations

* Accumulate origin into target, returns content before
accumulate in

 The accumulate operation is atomic

* Order between operations can be relaxed with info
(accumulate_ordering = raw, waw, rar, war) during
window creation

MPI_Accumulate(const void *origin_addr, int origin_count, MPI_Datatype origin_datatype,
int target_rank, MPI_Aint target_disp, int target_count, MPI_Datatype target_datatype,
MPI_Op op, MPI_Win win)

MPI_Get_accumulate(const void *origin_addr, int origin_count, MPI_Datatype origin_datatype,
void * , int , MPI_Datatype ,
int target_rank, MPI_Aint target_disp, int target_count, MPI_Datatype target_datatype,
MPI_Op op, MPI_Win win)

One Sided Atomic Operations

e Similar to the atomic operations on the processor

* Fetch_and _op common use case for single element

* Supposed to be a faster version of the
MPI_Get_accumulate because of the restriction on the

datatype and count

 Compare and swap

 Compares buffer with target and replaces
value at target with origin if compare and target are
identical. Original target value is returned in

MPI_Fetch_and_op(const void *origin_addr, void * , MP|_Datatype datatype,
int target_rank, MPI_Aint target disp, MPI_Op op, MPI_Win win)
MPI_Compare_and_swap(const void *origin_addr, const void * , void *

MPI_Datatype datatype, int target rank, MPI_Aint target disp, MPl_Win win)

One Sided Synchronizations

e Active / Passive

MPI_Win_fence(int assert, MPI_Win win)

* Collective Synchronization: all operations started before
will complete by the time we return
* Ends the exposure epoch for the entire window

e Optimization possible via the MPI_MODE_NOPRECEDE assert (no
local or remote operations with target the local processor exists)

MPI_Win_post(MPIl_Group group, int assert, MPl_Win win)
MPI_Win_start(MPI_Group group, int assert, MPI_Win win)
MPI_Win_complete(MPI_Win win)
MPI_Win_wait(MPIl_Win win)

* Specification of access/exposure epochs separately:
* Post: start exposure epoch to group, nonblocking
 Start: start access epoch to group, may wait for post

. Compl)ete: finish prev. access epoch, origin completion only (not
target

* Wait: will wait for complete, completes at (active) target
* As asynchronous as possible

One Sided Synchronizations

MPI_Win_lock(int lock_type, int rank, int assert, MPI_Win win)
MPI_Win_unlock(int rank, MPI_Win win)

* |Initiates RMA access epoch to rank
* No concept of exposure epoch

* Unlock closes access epoch
e Operations have completed at origin and target
* Type:
* Exclusive: no other process may hold lock to rank

* More like a real lock, e.g., for local accesses
* Shared: other processes may also hold lock

MPI_Win_lock_all(int assert, MPl_Win win)
MPI_Win_unlock_all(MPIl_Win win)

 Starts a shared access epoch from origin to all ranks!
* Not collective!

* Does not really lock anything
* Opens a different mode of use

More advanced MPI and
mixed programming topics

Extracting messages from MP|

 MPI_Recv delivers each message from a peer in the
order in which these messages were send

* No coordination between peers is possible

* Take a scenario where we have a ring of processors with (P-1) participants,
and a lone process that centralize messages from all peers.

* Each processoré_except 0) waits for a message from its predecessor in the
ring before sending a message to the coordinator

* In which order the messages are received at the coordinator ?

* How we can implement this if each ring participant send a message of a
different length ?

* What if we assume a large number of processes?

e Missing functionality: the capability to peek (but not alter)
into the network to extract what message will be the next to
be locally received

* Functionality that behaves as MPI_Recv but without altering the
matching queue

MPI Probe

int MPI_Probe(int source, int tag, MPI_Comm comm, MPI_Status *status);

int MPI_Iprobe(int source, int tag, MPI_Comm comm, int *flag, MPI_Status *status);
Int MPl_Get_count(MPI_Status™ status, MPI_Datatype datatype, int* count);
MPI_Status a structure containing the fields MPI_SOURCE, MPI_TAG and MPI_ERROR

e MPI_ANY_SOURCE and MPI_ANY_TAG can be used as
markers for unnamed receives

* The usual usage scenario is probe, memory allocation
and then receive

* How can we use this functionality in a thread safe application
when all threads work on the same communicator ?

e Assume 2 threads (X,Y) doing the probe (P), alloc (A) and
receive (R) operation each one on its own context
o Xp—X) DXz Y, =Y, —Yp
 What happens if the order of the operations is
Xo— X, — Y, =Y, =Y —X;

* The access to the matching queue need to be protected
for concurrent accesses

Message Probe

* Functionality that extracts the message from the
matching queue but without receiving it

e Supported by functionality to extract the content of the
message into a user provided buffer

* Any partial ordering between our threads X and Y is now
correct: Xpo— X, — Yp =Y, =Y —Xp

int MPI_Mprobe(int source, int tag, MPI_Comm comm, MPI_Message *message,
MPI_Status *status);

int MPI_Improbe(int source, int tag, MPI_Comm comm, int *flag, MPI_Message *message,
MPI_Status *status)

int MPI_Mrecv(void *buf, int count, MPIl_Datatype type, MPI_Message *message,
MPI_Status *status);

int MPI_Imrecv(void *buf, int count, MPI_Datatype type, MPI_Message *message,
MPI_Request *request);

Collective Communication with threads

* What is happening if multiple threads issue in the
same communicator in same time
* Multiple blocking collectives ?

* Multiple non-blocking collective with the same datatype
and count ?

* Multiple non-blocking collective with the different
datatype and count ?

Shared Memory

* Potential for memory reduction as initialization
data can be shared between processes

* Avoid recomputing the same initial state by multiple
applications (on the same node)

e POSIX provides shared memory regions but (1) not all
Oses have support for them and (2) it does not integrate
with MPI functionality

* Need functionality to split a communicator in
disjoint groups with shared capabilities
e Similar to MPI_Comm_ split with architecture aware

color (key will then be the rank in the original
communicator)

 Single info key standardized: MPI_COMM _TYPE_SHARED

 Some MPI| implementations provide support for
different granularities of sharing (Open MPI)

int MPI_Comm_split_type(MPl_Comm comm, int split_type, int key, MPI_Info info,
MPI_Comm *newcomm);

Shared Memory Window

* Allocates shared memory regions in win

* Collective call resulting in a fully capable RMA window

* Constraint: all processes in the communicator must be
capable of physically sharing memory (usually same
node)

* The call returns a pointer to the local part
* The info key define how the global shared memory
region is defined:

* Contiguous: process i memory starts right after the end of
process i-1

* Non contiguous (key alloc_shared noncontig): allow the MPI to
provide NUMA-aware optimizations.

* One way to create the communicator needed is to use
MPI_Comm_split_type

int MPI_Win_allocate_shared (MPI_Aint size, int disp_unit, MPI_Info info, MPI_Comm comm,
void *baseptr, MPI_Win *win);

Shared Memory Window

* In non contiguous cases we need to extract the
remote address in order to complete RMA
operations

* As the memory region might be mapped at different
addresses in different processes each process local
address has no meaning

* Unlike in Open SHMEM where the RMA operations applied on
symmetric memory (!)
* Only works for windows of type
MPI_WIN_FLAVOR_SHARED (aka. created via
MPI_Win_allocate shared)

int MPI_Win_shared_query (MPI_Win win, int rank, MPI_Aint *size, int *disp_unit,
void *baseptr);

RMA and pt2pt puzzle ?

* Assuming a correctly initialized window what is the
outcome of the following code ?

for(i = 0; i < len;a[i] = (double)(10xme+i), i++);

if (me ==0){

MPI_Win_lock(MPI]_LOCK_EXCLUSIVE, 1, 0, win);
MPI_Send(NULL, 0, MPI_BYTE, 2, 1001, MPI_COMM_WORLD);
MPI_Get(a,len,MPI_DOUBLE,1,0,len,MPlI_DOUBLE,win);
MPI_Win_unlock(1, win);

for(i = 0; i < len; i++) printf(”a[%d] = %d\n”, a[i]);

}else if (me==2){ /* this should block till 0 releases the lock. */
MPI_Recv(NULL, 0, MPI_BYTE, 0, 1001, MPI_COMM_WORLD, MP|_STATUS_IGNORE);
MPI_Win_lock(MPI_LOCK_EXCLUSIVE, 1, 0, win);
MPI_Put(a,len,MPI_DOUBLE,1,0,len,MPl_DOUBLE,win);
MPI_Win_unlock(1, win);

