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e Each programming
paradigm only covers a
particular spectrum of the
hardware capabilities

— MPI is about moving data

between distributed
memory machines

— CUDA is about accessing
the sheer computations
power of a single GPU

— OpenMP is about taking
advantage of the
multicores architectures

* Whatis involved in moving
data between 2 machines

—  Bus (PCI/PCI-X)

Network — Memory (pageable,
(‘ard pinned, virtual)
— OS (security)

Applications need to fully take advantage of all available
hardware capabilities . It became imperative to combine
different programming paradigms together !



PCI* performance

PCI - Peripheral Component Interconnect
PCI-X - Peripheral Component Interconnect eXtended
PCle - Peripheral Component Interconnect Express

has a protocol and processing overhead due to the
robustness (line code below)
CRC and acknowledgements
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https://en.wikipedia.org/wiki/PCl_Express

split transactions (transactions with request and response separated by time)

additional transfer

PCI Express Line Transfer Throughput!”
version code ratel! x1 %2 x4 %8 x16

1.0 8b/10b 25GT/s| 250 MB/s| 500 MB/s 1 GB/s 2 GB/s 4 GB/s
2.0 8b/10b 5.0GT/s| 500 MB/s 1 GB/s 2 GB/s 4 GB/s 8 GB/s
3.0 128b/130b 8.0 GT/s | 984.6 MB/s | 1.97 GB/s | 3.94 GB/s | 7.9 GB/s | 15.8 GB/s
4.0 128b/130b | | 16.0 GT/s | 1969 MB/s | 3.94 GB/s | 7.9 GB/s | 15.8 GB/s | 31.5 GB/s
5.0130187] (expected in Q2 2019)1% 32.0 or 3938 or 7.90r 15.8 or 31.50r 63.0 or

25.0 GT/s!'" | 3077 MB/s | 6.15 GB/s | 12.3 GB/s | 24.6 GB/s | 49.2 GB/s

i. @0 |n each direction {(each lane is a dual simplex channel).
ii. » Both rates are being considered for technical feasibility.



CUDA

-  The CPU is the main driver, it
g launches kernels on the GPU

] ﬁw that perform computations
GP°U

sum<<<1,1>>>(2, 3, device_z);

— Data must be moved between
main memory and GPU prior to
the computations

L]

= — And must be fetched back once
S— the computation is completed

Card

— In general these are explicit
operations (cudaMemcpy)



MPI + CUDA

* MPIlis handling
main memory
while CUDA
kernels update
the GPU memory.
Explicit memory
copy from the
device to the CPU

GPU
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coherence.

if( 0 ==rank ) {
cudaMemcpy(host_buffer, device_buffer, size, cudaMemcpyDeviceToHost);
MPI_Send(host_buffer, size, MPI_CHAR, 1, tag, MPI_COMM_WORLD);

}else {// assume MPI rank 1
MPI_Recv(host_buffer, size, MPI_CHAR, O, tag, MPI_COMM_WORLD, &status);
cudaMemcpy(device_buffer, host_buffer, size, cudaMemcpyHostToDevice);

}



Unified Virtual Addressing (UVA)

No UVA: Multiple Memory Spaces UVA: Single Address Space
System GPUO GPU1 System GPUO GPU1
Memory Memory Memory Memory Memory Memory

0x0000 0x0000 0x0000 0x0000
OXFFFF OXFFFF OXFFFF E
l J L i

' "l Il Il Il Il
EEE oEE
| PCl-e | PCl-e

Devices have similar ranges of Devices have continuous ranges of
memory. memory (managed by the hardware
Impossible to know where a and 0S).

memory range belongs to A memory address clearly identifies the

hardware device hosting the memory

UVA: One address space for all CPU and GPU memory
No need to alter libraries, they can how identify on which
device the memory is located



Nvidia GPUDirect

No GPUDirect GPUDirect
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e Allowed pinned pages to be shared between
different users

— Ne need for multiple intermediary buffers to
ready the data to be sent over the NiC

CUDA 3.1



Nvidia GPUDirect P2P

No GPUDirect P2P GPUDirect P2P
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e P2P (Peer-to-Peer) allows memory to be
copied between devices on the same node
without going through the main memory.

CUDA 4.0



Nvidia GPUDirect RDMA

No GPUDirect RDMA GPUDirect RDMA
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* Push the data out of the GPU directly into the
NiC (or other hardware component).

— Implement standard parts of the PCI-X protocol

CUDA 5.0



MPI + CUDA: integration/awarness

* Explicit memory
System System

Memory GDDRS Memory copy from the
Memory

THANRARS

device to the CPU is
not necessary to
ensure coherence.

'u & * Data now flows

' directly between

the local and

remote memory
Netuork (independent on

the location of the
if( 0 == rank )} memory).
MPI_Send(device_Euffer, size, MP_I_CHAR, 1, tag, MPI_COMM_WORLD);

}else {// assume MPI rank 1
MPI_Recv(device_buffer, size, MPI_CHAR, 0, tag, MPI_COMM_WORLD, &status);

— i — ) ] I




CUDA-aware MPI
if( 0 ==rank) {

MPI_Send(device_buffer, size, MPI_CHAR, 1, tag, MPI_COMM_WORLD);
}else {// assume MPI rank 1
MPI_Recv(device_buffer, size, MPI_CHAR, 0, tag, MPI_COMM_WORLD, &status);

}

OpenMPI 1.7.4 MLNX FDR IB (4X) Tesla K40
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SGI MPI (1.08)



Debugging

Commercial tools (DDT, TV, ...)

If possibility to export xterm:

mpirun —np 2 xterm —e gdb —args <my app args>

If not, add a sleep (or a loop around a sleep in
your applications) and use “gdb —p <pid>”" to
attach to your process (once connected to the
same node where the application is running)

gdb can execute GDB commands from a FILE
(with --command=FILE, -x )



Profiling

* Non-CUDA application: valgrind (free), or
vtune (Intel), Score-P, Tau, Vampir

* CUDA application: nvprof from CUDA
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