
George	Bosilca
CS462

MPI	+	X	programming

UTK	resources:	Rho	Cluster	with	GPGPU
https://newton.utk.edu/doc/Documentation/Systems/RhoCluster



MPI
• Each	programming	

paradigm	only	covers	a	
particular	spectrum	of	the	
hardware	capabilities
– MPI	is	about	moving	data	

between	distributed	
memory	machines

– CUDA	is	about	accessing	
the	sheer	computations	
power	of	a	single	GPU

– OpenMP is	about	taking	
advantage	of	the	
multicores	architectures

• What	is	involved	in	moving	
data	between	2	machines
– Bus	(PCI/PCI-X)
– Memory	(pageable,	

pinned,	virtual)
– OS	(security)

Applications	need	to	fully	take	advantage	of	all	available	
hardware	capabilities	.	It	became	imperative	to	combine	
different	programming	paradigms	together	!	



PCI*	performance
PCI	- Peripheral	Component	Interconnect
PCI-X	- Peripheral	Component	Interconnect	eXtended
PCIe - Peripheral	Component	Interconnect	Express

https://en.wikipedia.org/wiki/PCI_Express

• split	transactions	(transactions	with	request	and	response	separated	by	time)
• has	a	protocol	and	processing	overhead	due	to	the	additional	transfer	

robustness	(line	code	below)
• CRC	and	acknowledgements



CUDA

• The	CPU	is	the	main	driver,	it	
launches	kernels	on	the	GPU	
that	perform	computations
sum<<<1,1>>>(2, 3, device_z);
– Data	must	be	moved	between	
main	memory	and	GPU	prior	to	
the	computations

– And	must	be	fetched	back	once	
the	computation	is	completed

– In	general	these	are	explicit	
operations	(cudaMemcpy)



MPI	+	CUDA
• MPI	is	handling	
main	memory	
while	CUDA	
kernels	update	
the	GPU	memory.	
Explicit	memory	
copy	from	the	
device	to	the	CPU	
is	necessary	to	
ensure	
coherence.

if(	0	==	rank	)	{
cudaMemcpy(host_buffer,	device_buffer,	size,	cudaMemcpyDeviceToHost);
MPI_Send(host_buffer,	size,	MPI_CHAR,	1,	tag,	MPI_COMM_WORLD);

}	else	{	//	assume	MPI	rank	1
MPI_Recv(host_buffer,	size,	MPI_CHAR,	0,	tag,	MPI_COMM_WORLD,	&status);
cudaMemcpy(device_buffer,	host_buffer,	size,	cudaMemcpyHostToDevice);

}



Unified	Virtual	Addressing	(UVA)

Devices	have	similar	ranges	of	
memory.
Impossible	to	know	where	a	
memory	range	belongs	to

Devices	have	continuous	ranges	of	
memory	(managed	by	the	hardware	
and	OS).
A	memory	address	clearly	identifies	the	
hardware	device	hosting	the	memory

UVA:	One	address	space	for	all	CPU	and	GPU	memory
No	need	to	alter	libraries,	they	can	how	identify	on	which	
device	the	memory	is	located



Nvidia GPUDirect

• Allowed	pinned	pages	to	be	shared	between	
different	users
– Ne	need	for	multiple	intermediary	buffers	to	
ready	the	data	to	be	sent	over	the	NiC

CUDA	3.1



Nvidia GPUDirect P2P

• P2P	(Peer-to-Peer)	allows	memory	to	be	
copied	between	devices	on	the	same	node	
without	going	through	the	main	memory.

CUDA	4.0



Nvidia GPUDirect RDMA

• Push	the	data	out	of	the	GPU	directly	into	the	
NiC (or	other	hardware	component).
– Implement	standard	parts	of	the	PCI-X	protocol

CUDA	5.0



MPI	+	CUDA:	integration/awarness

if(	0	==	rank	)	{
cudaMemcpy(host_buffer,	device_buffer,	size,	cudaMemcpyDeviceToHost);
MPI_Send(device_buffer,	size,	MPI_CHAR,	1,	tag,	MPI_COMM_WORLD);

}	else	{	//	assume	MPI	rank	1
MPI_Recv(device_buffer,	size,	MPI_CHAR,	0,	tag,	MPI_COMM_WORLD,	&status);
cudaMemcpy(device_buffer,	host_buffer,	size,	cudaMemcpyHostToDevice);

}

• Explicit	memory	
copy	from	the	
device	to	the	CPU	is	
not necessary	to	
ensure	coherence.

• Data	now	flows	
directly	between	
the	local	and	
remote	memory	
(independent	on	
the	location	of	the	
memory).



CUDA-aware	MPI
if(	0	==	rank	)	{
MPI_Send(device_buffer,	size,	MPI_CHAR,	1,	tag,	MPI_COMM_WORLD);

}	else	{	//	assume	MPI	rank	1
MPI_Recv(device_buffer,	size,	MPI_CHAR,	0,	tag,	MPI_COMM_WORLD,	&status);

}

MVAPICH2 1.8/1.9b
OpenMPI 1.10
CRAY MPI	(MPT	5.6.2)
IBM	Platform	MPI (8.3)
SGI	MPI (1.08)



Debugging

• Commercial	tools	(DDT,	TV,	…)
• If	possibility	to	export	xterm:
mpirun –np	2	xterm –e	gdb –args <my	app	args>

• If	not,	add	a	sleep	(or	a	loop	around	a	sleep	in	
your	applications)	and	use	”gdb –p	<pid>”	to	
attach	to	your	process	(once	connected	to	the	
same	node	where	the	application	is	running)

• gdb can	execute	GDB	commands	from	a	FILE
(with	--command=FILE,	-x	)



Profiling

• Non-CUDA	application:	valgrind (free),	or	
vtune (Intel),	Score-P,	Tau,	Vampir

• CUDA	application:	nvprof from	CUDA


