MPI + X programming

UTK resources: Rho Cluster with GPGPU ez
https://newton.utk. edu/doc/Documentatlon/Systems/RhoCIuster

George Bosilca
CS462

e Each programming
paradigm only covers a
particular spectrum of the
hardware capabilities

— MPI is about moving data

between distributed
memory machines

— CUDA is about accessing
the sheer computations
power of a single GPU

— OpenMP is about taking
advantage of the
multicores architectures

* Whatis involved in moving
data between 2 machines

— Bus (PCI/PCI-X)

Network — Memory (pageable,
(‘ard pinned, virtual)
— OS (security)

Applications need to fully take advantage of all available
hardware capabilities . It became imperative to combine
different programming paradigms together !

PCI* performance

PCI - Peripheral Component Interconnect
PCI-X - Peripheral Component Interconnect eXtended
PCle - Peripheral Component Interconnect Express

has a protocol and processing overhead due to the
robustness (line code below)
CRC and acknowledgements

PCI Express link performance!2?!(32]

PCl Express device A

3

Wire
Signal
Lane
<+——— Link

Yy
PN & |

PClI Express device B ‘

https://en.wikipedia.org/wiki/PCl_Express

split transactions (transactions with request and response separated by time)

additional transfer

PCI Express Line Transfer Throughput!”
version code ratel! x1 %2 x4 %8 x16

1.0 8b/10b 25GT/s| 250 MB/s| 500 MB/s 1 GB/s 2 GB/s 4 GB/s
2.0 8b/10b 5.0GT/s| 500 MB/s 1 GB/s 2 GB/s 4 GB/s 8 GB/s
3.0 128b/130b 8.0 GT/s | 984.6 MB/s | 1.97 GB/s | 3.94 GB/s | 7.9 GB/s | 15.8 GB/s
4.0 128b/130b | | 16.0 GT/s | 1969 MB/s | 3.94 GB/s | 7.9 GB/s | 15.8 GB/s | 31.5 GB/s
5.0130187] (expected in Q2 2019)1% 32.0 or 3938 or 7.90r 15.8 or 31.50r 63.0 or

25.0 GT/s!'" | 3077 MB/s | 6.15 GB/s | 12.3 GB/s | 24.6 GB/s | 49.2 GB/s

i. @0 |n each direction {(each lane is a dual simplex channel).
ii. » Both rates are being considered for technical feasibility.

CUDA

- The CPU is the main driver, it
g launches kernels on the GPU

] ﬁw that perform computations
GP°U

sum<<<1,1>>>(2, 3, device_z);

— Data must be moved between
main memory and GPU prior to
the computations

L]

= — And must be fetched back once
S— the computation is completed

Card

— In general these are explicit
operations (cudaMemcpy)

MPI + CUDA

* MPIlis handling
main memory
while CUDA
kernels update
the GPU memory.
Explicit memory
copy from the
device to the CPU

GPU

:, l '
-I[]

PCl-e IS necessary to
Network ensure

-]

PCl-e

Nety/ork

Cird Card

coherence.

if(0 ==rank) {
cudaMemcpy(host_buffer, device_buffer, size, cudaMemcpyDeviceToHost);
MPI_Send(host_buffer, size, MPI_CHAR, 1, tag, MPI_COMM_WORLD);

}else {// assume MPI rank 1
MPI_Recv(host_buffer, size, MPI_CHAR, O, tag, MPI_COMM_WORLD, &status);
cudaMemcpy(device_buffer, host_buffer, size, cudaMemcpyHostToDevice);

}

Unified Virtual Addressing (UVA)

No UVA: Multiple Memory Spaces UVA: Single Address Space
System GPUO GPU1 System GPUO GPU1
Memory Memory Memory Memory Memory Memory

0x0000 0x0000 0x0000 0x0000
OXFFFF OXFFFF OXFFFF E
l J L i

' "l Il Il Il Il
EEE oEE
| PCl-e | PCl-e

Devices have similar ranges of Devices have continuous ranges of
memory. memory (managed by the hardware
Impossible to know where a and 0S).

memory range belongs to A memory address clearly identifies the

hardware device hosting the memory

UVA: One address space for all CPU and GPU memory
No need to alter libraries, they can how identify on which
device the memory is located

Nvidia GPUDirect

No GPUDirect GPUDirect

a@— @ O
SysMem SysMem
nt e
" 5 |
' : ¥ set . o (' =14
| 3l | 3 o 3
InfiniBand GPU InfiniBand GPU
Memory Memory

e Allowed pinned pages to be shared between
different users

— Ne need for multiple intermediary buffers to
ready the data to be sent over the NiC

CUDA 3.1

Nvidia GPUDirect P2P

No GPUDirect P2P GPUDirect P2P

N = i
- 2 &
] | et
| 0l B L Bl &3 | Bl 4 |
GPU GPU GPU GPU
Memory Memory Memory Memory

e P2P (Peer-to-Peer) allows memory to be
copied between devices on the same node
without going through the main memory.

CUDA 4.0

Nvidia GPUDirect RDMA

No GPUDirect RDMA GPUDirect RDMA

@ - e

L

InfiniBand InfiniBand
. Y Heror

* Push the data out of the GPU directly into the
NiC (or other hardware component).

— Implement standard parts of the PCI-X protocol

CUDA 5.0

MPI + CUDA: integration/awarness

* Explicit memory
System System

Memory GDDRS Memory copy from the
Memory

THANRARS

device to the CPU is
not necessary to
ensure coherence.

'u & * Data now flows

' directly between

the local and

remote memory
Netuork (independent on

the location of the
if(0 == rank)} memory).
MPI_Send(device_Euffer, size, MP_I_CHAR, 1, tag, MPI_COMM_WORLD);

}else {// assume MPI rank 1
MPI_Recv(device_buffer, size, MPI_CHAR, 0, tag, MPI_COMM_WORLD, &status);

— i —)] I

CUDA-aware MPI
if(0 ==rank) {

MPI_Send(device_buffer, size, MPI_CHAR, 1, tag, MPI_COMM_WORLD);
}else {// assume MPI rank 1
MPI_Recv(device_buffer, size, MPI_CHAR, 0, tag, MPI_COMM_WORLD, &status);

}

OpenMPI 1.7.4 MLNX FDR IB (4X) Tesla K40

7000
6000
2 5000
g 4000 ~+-CUDA-aware MPI with
; 3000 GPUDirect RDMA
e 2000 -=-CUDA-aware MPI
1000
0
-~ T O YT 0 YT 0 ¥ o ¥ o v *regular MPI
-l 888KIHAI
¥ OV 1IN N 0 Y
= el g F 2 MVAPICH2 1.8/1.9b
Message Size (byte) OpenMPI 1.10
CRAY MPI (MPT 5.6.2)
Latency (1 byte) 19.04us 16.91 us IBM Platform MPI (8.3)

SGI MPI (1.08)

Debugging

Commercial tools (DDT, TV, ...)

If possibility to export xterm:

mpirun —np 2 xterm —e gdb —args <my app args>

If not, add a sleep (or a loop around a sleep in
your applications) and use “gdb —p <pid>”" to
attach to your process (once connected to the
same node where the application is running)

gdb can execute GDB commands from a FILE
(with --command=FILE, -x)

Profiling

* Non-CUDA application: valgrind (free), or
vtune (Intel), Score-P, Tau, Vampir

* CUDA application: nvprof from CUDA

Vampir - Trace View - /home/juckel/PIConGPL trace.otf r |
f\f Fle Edt Crat FRer Wndow Hep
- T B
Evkees
Timeine Funcon Summary
0s 10s 20s s 40s 50s s 0s 80s %0s 100s 10s All Processes, Accumuated Exclusive Tme per Function
2008 0s
Frocess 0 ST e vcctoveAndaarkPartcies a
CUDAJ0] 1:2 devicelove AncMark Particles<b0>
CUDA1) 2.1 DeviceDeleteParticles
cuDAZ] 31 1218028 ermeComputeCurr...e0 ParticieTyped>
CUDAT3] 41 18385 VerneComputeCurr.. ¢0 ParticiTypet >
Teead 1 667265 [DeviceAdcParticies -
Process 6 = Furcton Summary
Process 7 L — — Al Processes, Accumisted Exclusive Tme per Function Group
Process 8 : - == |
Process s mmmrppm— e TTT—— VS Esos g ASEREL a2
Thread 93) s
e == 1 MP11490.032 8]
Thread 102 o 0
m 1:2 - 0 ;
toond 1 CUDA_DLE [580.704 5
B S —————— A_SYNC 1138363 3)
CUDA[D] 132 (1
CUDAY1] 141 ¥ y Contest vew
CUDA[2) 151 0 - Counter Data Timeline B
- -~ -

CUDA[3) 161 = = =
CUDAJ1] 61, CUDA(2) 7-1, CUDA(3] 81, CUDA(D] &2, Values of Metrc “Actwve Threads” over Tme

18y 1 w

25 CUDA(3 81 42

100M | UDA3)

Eh | 1, CUDA 81, CUDAD] 82

25M

oM aal °

Mrmum Locaticns CUDAZ] 7:1, CUDA(1] 6:1, CUDA(3] 8:1 =

