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Tasks

• Available	starting	with	OpenMP 3.0
• Remember	the	Bernstein	conditions	?	They	define
dependence	relationship	between	all	computational
entities	(including	OpenMP tasks)
• In	this	case	the	dependencies	are	explicitly	declared

• A	task	is	composed	of
• Code	to	be	executed
• Data	environment	(inputs	to	be	used	and	outputs	to	be	generated)
• A	location	where	the	task	will	be	executed	(a	thread)
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Tasks

• The	tasks	were	initially	implicit	in	OpenMP
• A	parallel construct	constructs	implicit	tasks,	one	per	thread
• Teams	of	threads	are	created	(or	declared)
• Threads	in	teams	are	assigned	to	each	task
• They	synchronize	with	the	master	thread	using	a	barrier	once	all	tasks	are	
completed

• Allowing	the	application	to	explicitly	create	tasks	provide	support	for	
different	execution	models
• More	elastic	as	now	the	threads	have	a	choice	between	multiple	existing	
tasks
• Require	scheduling	strategies	to	be	more	powerful
• Move	away	from	the	original	fork/join	model	of	OpenMP constructs



Technical	Notions
• When	a	thread	encounters	a	task	construct,	it	may	choose	to	execute	
the	task	immediately	or	defer	its	execution	until	a	later	time.	If	
deferred,	the	task	in	placed	in	a	conceptual	pool	of	tasks	associated	
with	the	current	parallel	region.	All	team	threads	will	take	tasks	out	of	
the	pool	and	execute	them	until	the	pool	is	empty.	A	thread	that	
executes	a	task	might	be	different	from	the	thread	that	originally	
encountered	it.
• The	code	associated	with	a	task	construct	will	be	executed	only	once.	
A	task	is tied if	the	code	is	executed	by	the	same	thread	from	
beginning	to	end.	Otherwise,	the	task	is untied (the	code	can	be	
executed	by	more	than	one	thread).



Types	of	tasks

• Undeferred:	the	execution	is	not	deferred	with	respect	to	its	generating	
task	region,	and	the	generating	task	region	is	suspended	until	execution	of	
the	undeferred task	is	completed	(such	as	the	tasks	created	with	the	if
clause)
• Included:	execution	is	sequentially	included	in	the	generating	task	region	
(such	as	a	result	from	a	final clause)
• Subtle	difference:	for	undeferred task,	the	generating	task	region	is	
suspended	until	execution	of	the	undeferred task	is	completed,	even	if	the	
undeferred task	is	not	executed	immediately.
• The	undeferred task	may	be	placed	in	the	conceptual	pool	and	executed	at	a	later	
time	by	the	encountering	thread	or	by	some	other	thread;	in	the	meantime,	the	
generating	task	is	suspended.	Once	the	execution	of	the	undeferred task	is	
completed,	the	generating	task	can	resume.



task	Construct
#pragma	omp task	[clause[,clause]*]
• Clause	can	be

• if	(expression)
• final	(expression)
• untied
• mergeable
• default	(shared	|	firstprivate |	none)
• private	(list)
• firstprivate (list)
• shared	(list)
• depend	(list)
• priority	(value)



task	Construct
#pragma	omp task	[clause[,clause]*]
• Clause	can	be

• depend	(list)
• if	(expression)
• final	(expression)
• untied
• mergeable
• default	(shared	|	firstprivate |	none)
• private	(list)
• firstprivate (list)
• shared	(list)
• priority	(value)

• Enforces	additional	constraints	
between	tasks
• in,	out,	inout,	source,	sink
• The	list	if	depend	contains	storage	
locations	(memory	addresses)	on	
which	the	dependency	will	be	tracked
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#pragma	omp task	depend	(out	0xdeadbeef,	0xabdcef00)
task1(…)
#pragma	omp task	depend	(in	0xdeadbeef)
task2(…)
#pragma	omp task	depend	(in	0xabcdef00)



task	Construct
• When	the	if	expression	argument	
evaluate	to	false
• The	task	is	executed	immediately	by	the	
encountering	thread

• Allow	for	user-defined	optimizations
• Example:	a	model	can	be	used	to	predict	the	
cost	of	executing	the	task	and	if	the	cost	is	
too	small	the	cost	of	deferring	the	task	
would	jeopardize	any	possible	benefit

• Allow	to	define	a	critical	path	with	respect	to	
cache	friendliness	and	memory	affinity

#pragma	omp task	[clause[,clause]*]
• Clause	can	be

• depend	(list)
• if	(expression)
• final	(expression)
• untied
• mergeable
• default	(shared	|	firstprivate |	none)
• private	(list)
• firstprivate (list)
• shared	(list)
• priority	(value)



task	Construct
#pragma	omp task	[clause[,clause]*]
• Clause	can	be

• depend	(list)
• if	(expression)
• final	(expression)
• untied
• mergeable
• default	(shared	|	firstprivate |	none)
• private	(list)
• firstprivate (list)
• shared	(list)
• priority	(value)

• When	the	final	expression	evaluates	
to	true	the	task	will	not	have	
descendants	(leaf	in	the	DAG	of	tasks)	
that	will	be	created	in	the	shared	pool	
of	tasks
• Allows	the	runtime	to	stop	generating	
and	deferring	new	tasks	and	instead	
execute	all	future	tasks	from	the	
current	task	directive	directly	in	the	
context	of	the	execution	thread



task	Construct
#pragma	omp task	[clause[,clause]*]
• Clause	can	be

• depend	(list)
• if	(expression)
• final	(expression)
• untied
• mergeable
• default	(shared	|	firstprivate |	none)
• private	(list)
• firstprivate (list)
• shared	(list)
• priority	(value)

• Different	parts	of	the	task	can	be	
executed	by	different	threads.	Implies	
the	tasks	will	yield,	allowing	the	
executing	thread	to	switch	context	
and	execute	another	task	instead.
• If	the	task	is	tied,	it	is	guaranteed	that	
the	same	thread	will	execute	all	the	
parts	of	the	task,	even	if	the	task	
execution	has	been	temporarily	
suspended
• An	untied task	generator	can	be	
moved	from	thread	to	thread	
allowing	the	tasks	to	be	generated	by	
different	entities.



task	Construct
#pragma	omp task	[clause[,clause]*]
• Clause	can	be

• depend	(list)
• if	(expression)
• final	(expression)
• untied
• mergeable
• default	(shared	|	firstprivate |	none)
• private	(list)
• firstprivate (list)
• shared	(list)
• priority	(value)

Amerged task	is	a	task	whose	data	
environment	is	the	same	as	that	of	its	
generating	task	region.	When	
amergeable clause	is	present	on	
a task construct,	then	the	
implementation	may	choose	to	
generate	a	merged	task	instead.	If	a	
merged	task	is	generated,	then	the	
behavior	is	as	though	there	was	no	task	
directive	at	all



task	Construct
#pragma	omp task	[clause[,clause]*]
• Clause	can	be

• depend	(list)
• if	(expression)
• final	(expression)
• untied
• mergeable
• default	(shared	|	firstprivate |	none)
• private	(list)
• firstprivate (list)
• shared	(list)
• priority (value)

• Priority is	a	hint for	the	scheduler.	A	
non-negative	numerical	value,	that	
recommend	a	task	with	a	high	priority	
to	be	executed	before	a	task	with	
lower	priority
• Default defines	the	data-sharing	
attributes	of	variables	that	are	
referenced	
• firstprivate:	each	construct	has	a	copy	of	
the	data	item,	and	it	is	initialized	from	
the	upper	construct	before	the	call

• lastprivate:	each	construct	has	a	non-
initialized	copy,	and	it’s	value	is	updated	
once	the	task	in	completed

• shared:	All	references	to	a	list	item	
within	a	task	refer	to	the	storage	area	of	
the	original	variable	

• private:	each	task	receive	a	new	item



Scheduling

• OpenMP defines	the	following	task	scheduling	points:
• The	point	of	encountering	a	task	construct
• The	point	of	encountering	a	taskwait construct
• The	point	of	encountering	a	taskyield construct
• The	point	of	encountering	an	implicit	or	explicit	barrier
• The	completion	point	of	the	task

• all	explicit	tasks	generated	within	a	parallel	region	are	guaranteed	to	
be	complete	on	exit	from	the	next	implicit	or	explicit	barrier	within	
the	parallel	region



Fibonacci	– task	based	
int fib(int n)	{
int l,	r;

if	(n<2)	return	n;

#pragma	omp task	shared(l)	firstprivate(n)	\
final(n	<=	THRESHOLD)

l	=	fib(n-1);

#pragma	omp task	shared(r)	firstprivate(n)	\
final(n	<=	THRESHOLD)	

r	=	fib(n-2);

#pragma	omp taskwait
return	l+r;
}

int main()	{
int n	=	30;

omp_set_dynamic(0);
omp_set_num_threads(4);

#pragma omp parallel	shared(n)
{
#pragma	omp single
printf ("fib(%d)	=	%d\n",	n,	fib(n));
}

}

• Why	shared and	firstprivate ?
• Why	taskwait ?



Task	generation

#pragma	omp single	{	
#pragma	omp task	untied
for	(	i =	0;	i <	ONEZILLION;	i++)	
#pragma	omp task	
process(items[i]);

}	

• Many	tasks	will	be	generated
• At	some	point,	when	the	list	of	
deferred	tasks	is	too	long,	the	
implementation	is	allowed	to	stop	
generating	new	tasks,	and	switches	
every	thread	in	the	team	on	
executing	already	generated	tasks

• If	the	thread	that	generated	the	tasks	
is	executing	a	long	lasting	task,	we	
might	eventually	reach	a	starvation	
scenario	where	the	other	threads	do	
not	have	anything	else	to	execute,	
and	there	is	nobody	to	generate	new	
tasks

• If	the	generator	task	is	untied,	any	
other	thread	in	the	team	can	pick	it	
up,	and	start	generating	new	tasks
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tasks

• If	the	generator	task	is	untied,	any	
other	thread	in	the	team	can	pick	it	
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Adding	MPI	to	OpenMP
Hybrid	programming:	MPI	+	X



MPI	vs.	OpenMP

• Pure	MPI	Pro:
• Portable	to	distributed	and	shared	
memory	machines

• Scales	beyond	one	node
• No	data	placement	problem
• Explicit	communication

• Pure	MPI	Con:
• Difficult	to	develop	and	debug	
• High	latency,	low	bandwidth	(max	
PCI-x	bus)

• Large	granularity
• Difficult	load	balancing

• Pure	OpenMP Pro:
• Easy	to	implement	parallelism
• Low	latency,	high	bandwidth	(max	
memory	bus)

• Implicit	Communication
• Coarse	and	fine	granularity
• Dynamic	load	balancing

• Pure	OpenMP Con:
• Difficult	to	develop	and	debug	
• Only	on	shared	memory	machines
• Scale	within	one	node
• Possible	data	placement	problem	(on	
NUMA	architectures)

• No	specific	thread	order	



Why	hybrid	programming	?

• Hybrid	MPI+X	paradigm	is	the	software	trend	for	dealing	with	complexities	of	
hybrid	hierarchical	architectures	(such	as	heterogeneous	multi-core	architectures	
prevalent	nowadays).
• Elegant	in	concept	and	architecture:	using	MPI	across	nodes	and	OpenMP within	
nodes.	Good	usage	of	shared	memory	system	resource	(memory,	latency,	and	
bandwidth).
• Avoids	the	extra	communication	overhead	with	MPI	within	node.	Reduce	
memory	footprint.
• OpenMP adds	fine	granularity	(larger	message	sizes)	and	allows	increased	and/or	
dynamic	load	balancing.
• Some	problems	have	two-level	parallelism	naturally.
• Some	problems	could	only	use	restricted	number	of	MPI	tasks.
• Possible	better	scalability	than	both	pure	MPI	and	pure	OpenMP.	



Example	1

int main(int argc,	char*	argv[])	{
MPI_Init(NULL,	NULL);
MPI_Comm_rank(MPI_COMM_WORLD,	&rank);
#pragma	omp parallel	private(omp_rank)
{
omp_rank =	omp_get_thread_num();
printf(”Rank	%d	thread	%d\n”,	rank,	omp_rank);
}
MPI_Finalize();
}

• What	is	the	expected	
outcome	?
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Initializing	MPI	with	thread	support

• MPI_INIT_THREAD	(required,	&provided,	ierr)
• IN:	required,	desired	level	of	thread	support	(integer).
• OUT:	provided,	provided	level	of	thread	support	(integer).
• Beware:	Returned	provided	maybe	less	than	required.

• Thread	support	levels:
• MPI_THREAD_SINGLE:	Only	one	thread	will	execute.
• MPI_THREAD_FUNNELED:	Process	may	be	multi-threaded,	but	only	master	thread	
will	make	MPI	calls	(all	MPI	calls	are	’’funneled''	to	master	thread)

• MPI_THREAD_SERIALIZED:	Process	may	be	multi-threaded,	multiple	threads	may	
make	MPI	calls,	but	only	one	at	a	time:	MPI	calls	are	not	made	concurrently	from	
two	distinct	threads	(all	MPI	calls	are	’’serialized'').

• MPI_THREAD_MULTIPLE:	Multiple	threads	may	call	MPI,	with	no	restrictions.	

MPI_THREAD_SINGLE <	MPI_THREAD_FUNNELED <	MPI_THREAD_SERIALIZED <	MPI_THREAD_MULTIPLE



OMP	MASTER	calls	MPI

#pragma omp parallel
for(i =	0;	i <	BIG_NUMBER;	i++)
buf[i]	=	i;

#pragma	omp barrier
#pragma omp master
MPI_Send(buf,	…);

#pragma	omp barrier

• The	OMP	master	thread	is	the	thread	that	entered	main
• In	some	OSes	it	might	have	specific	properties	and	behaviors	(signals,	pid,	…)

• MPI_THREAD_FUNNELED	is	required
• Inside	a	parallel	region	there	are	no
implicit synchronizations
• An	explicit	barrier	before	the	MPI	call	is	needed
to	ensure	correctness	of	the	input	data
• An	explicit	barrier	after	the	MPI	call	is	needed
to	ensure	correctness	of	the	output	data
• It	also	implies	that	all	the	other	threads	are
wasting	time



OMP	MASTER	calls	MPI

• The	OMP	master	thread	is	the	thread	that	entered	main
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OMP	SINGLE	calls	MPI

• The	OMP	single	directive	ensure	the	only	one	thread	executes	the	
corresponding	block
• MPI_THREAD_SERIALIZED	is	required
• Inside	a	parallel	region	there	are	no
implicit synchronizations
• An	explicit	barrier	before	the	MPI	call	is	needed
to	ensure	correctness	of	the	input	data
• An	explicit	barrier	after	the	MPI	call	is	needed
to	ensure	correctness	of	the	output	data
• It	also	implies	that	all	the	other	threads	are
wasting	time

#pragma omp parallel
for(i =	0;	i <	BIG_NUMBER;	i++)
buf[i]	=	i;

#pragma	omp barrier
#pragma omp master
MPI_Send(buf,	…);

#pragma	omp barrier



OMP	SINGLE	calls	MPI

• The	OMP	single	directive	ensure	the	only	one	thread	executes	the	
corresponding	block
• MPI_THREAD_SERIALIZED	is	required
• Inside	a	parallel	region	there	are	no
implicit synchronizations
• An	explicit	barrier	before	the	MPI	call	is	needed
to	ensure	correctness	of	the	input	data
• An	explicit	barrier	after	the	MPI	call	is	needed
to	ensure	correctness	of	the	output	data
• It	also	implies	that	all	the	other	threads	are
wasting	time

#pragma omp parallel
{
for(i =	0;	i <	BIG_NUMBER;	i++)
buf[i]	=	i;

#pragma	omp barrier
#pragma omp single
MPI_Send(buf,	…);

#pragma	omp barrier
}



No	pain,	no	gain

• Enforcing	barriers	limit	the	performance
• Removing	the	barriers	depends	on	the	algorithm	and	on	the	other	
implicit	synchronizations	between	parts	of	the	algorithm
• When	was	the	data	updated	?	Outside	the	parallel	section	?
• When	will	be	the	data	used	?	Outside	this	parallel	section	?

• Without	the	barrier	automatic	overlap	between	computations	and	
communications	become	automatic



A	word	(or	two)	about	affinity

• Single	threaded	MPI	applications	rarely	raise	affinity	issues
• Unleashing	multiple	threads	in	the	context	of	the	same	application	is	
a	different	topic:
• Thread	affinity:	floating	vs.	bound

• Memory	issues
• Memory	affinity:	allocate	memory	as	close
as	possible	to	the	core	that	will	use	it	most
• Affinity	is	not	decided	during	the	allocation
• The	default	policy	is	”first	touch”

• Each	MPI	library	has	it’s	own	affinity
settings	(read	the	man/documentation…)



More	words	about	affinity

• Performance	with	and	without	correct
data	initialization
• HWLOC	is	the	tool	to	use	!

#pragma	omp parallel	for
for(	i =	0;	i <	MANY;	i++)	{
a[i]	=	1.0;	b[i]	=	2.0;	c[i]	=	0	}

#pragma	omp parallel	for
For(	i =	0;	i <	MANY;	i++	)	{
c[i]	=	a[i]	*	b[i];
}

Courtesy	Hongzhang Shan



Hybrid	Parallelization	steps
• From	sequential	code,	decompose	with	MPI	first,	then	add	OpenMP
• From	OpenMP code,	treat	as	serial	code.
• From	MPI	code,	add	OpenMP.
• Simplest	and	least	error-prone	way	is	to	use	MPI	outside	parallel	region,	and	
allow	only	master	thread	to	communicate	between	MPI	tasks.	
MPI_THREAD_FUNNELED	is	usually	the	best	choice.
• Keep	in	mind	the	cost	and	implications	of	serializations

• Could	use	MPI	inside	parallel	region	with	thread-safe	MPI.
• MPI_THREAD_MULTIPLE	comes	with	a	performance	cost.	Inside	the	MPI	library,	
thread	synchronizations	might	be	necessary,	and	this	might	show	on	the	
overheads	of	the	MPI	calls.
• Special	care	should	be	taken	regarding	collective	communications	(where	clearly	
only	one	thread	per	node	should	call	the	collective)
• Multiple	collective	calls	of	the	same	type	in	the	same	communicator	is	explicitly	prohibited	
by	the	MPI	standard



MPI	+	MPI	(2-level	hybridization)

• MPI	point-to-point	used	to	exchange	data	between	nodes,	MPI-3.0	
shared	memory	regions	used	inside	the	node	to	share	content
• Advantages

• Lower	communication	overheads:	No	message	passing	inside	of	the	SMP	nodes
• Simplicity:	only	one	parallel	programming	standard
• No	thread-related	data	races	(e.g.,	thread-safety	isn’t	an	issue)

• Problems
• Application	responsibility	to	split	communicators	into	shared	memory	islands
• To	minimize	shared	memory	communication	overhead:	the	data	accessed	by	the	
neighbors	must	be	stored	in	MPI	shared	memory	windows	(memory	regions	visible	to	
other	processes	where	explicit	synchronizations	are	necessary)

• Load-balancing	is	as	complicated	as	in	pure	MPI	


