
George	Bosilca

http://www.openshmem.org/site/

Parallel	Programming	Models
• What	exactly	means	parallel:	An	extension	to	
concurrency where	things	happens	on	different	
locations	(processors)

• One	simple	way	to	differentiate	programming	models	
is	by	their	address	space:	global vs.	distributed
– Global:	the	address	space	is	reachable	by	every	process	
(think	threading	or	OpenMP)

– Distributed:	each	process	address	space	is	private,	access	
only	goes	through	specialized	API	(MPI)

– Middle	ground:	partitioned	global	address	(PGAS	
descendants)	where	some	parts	are	private	and	some	
shared

The	PGAS	family
– Libraries:	GASNet,	ARMCI	/	Global	Arrays,	
GASPI/GPI,	OpenSHMEM

– Languages:	Chapel,	Titanuim,	X10,	UPC,	CoArray
Fortran

Program	
in	given	
language

Compiler	for	given	
language binary

Program	
using	

library	API
Compiler binary

Library	
implementation

La
ng
ua
ge

Li
br
ar
y

PGAS Languages vs Libraries

Languages(Libraries(

O"en%more%concise% More%informa/on%redundancy%in%program%

Requires%compiler%support% Generally%not%dependent%on%a%par/cular%
compiler%

More%compiler%op/miza/on%opportuni/es% Library%calls%are%a%"black%box"%to%compiler,%
typically%inhibi/ng%op/miza/on%

User%may%have%less%control%over%
performance%

O"en%usable%from%many%different%
languages%through%bindings%

Examples:%UPC,%CAF,%Titanium,%Chapel,%
X10%

Examples:%OpenSHMEM,%Global%Arrays,%
MPIQ3%

Courtesy	Dr.	Barbara	Chapman

PGAS

• Execution	entities	share	a	common	shared	
memory	region	distributed	among	all	
participants

Shared

Context	0

Private	0

Context	1

Private	1

Context	N-1

Private	N-1

Unified	Parallel	C	(UPC)

• Language	defines	a	“physical”	association	
between	execution	contexts	(UPC	threads)	and	
shared	data	items	called	“affinity”
– Scalars	data	is	affine	with	execution	context	0
– Standard	data	distribution	concepts	applies:	cyclic,	
block	and	block-cyclic

• All	interactions	with	shared	data	explicitly	
managed	by	the	application	developer.
– UPC	provides	a	toolbox	of	basic	primitives:	locks,	
barriers,	fences.

• Load	balancing	is	done	using	the	forall concept

CoArray Fortran

• SPMD-like:	multiple	images,	each	with	it’s	own	index	
(similar	to	rank	in	MPI),	exists

• Each	image	execute	independently	of	the	others	…	but	
the	same	program

• Synchronizations	between	images	is	explicit
• An	“object”	(data)	has	the	same	name	in	all	images
• An	image	can	only	work	in	local	data
• An	image	moves	remote	data	to	local	data,	using	
explicit	CAF	syntax.

• No	data	movement	outside	this	concept	is	allowed.

Symmetrical	Hierarchical	MEMory

• SPMD	application	developed	in	C,	C++	and	Fortran
• Similar	to	CAF:	programs	perform	computations	in	
their	own	address	space	but
– Explicitly	communicate	data	and	synchronize	with	the	
other	processes

• A	process	participating	in	SHMEM	applications	are	
called	processing	elements	(PE)

• SHMEM	provides	remote	one-sided	data	transfer,	some	
basic	collective	concepts	(broadcast	and	reduction),	
specialized	synchronizations	and	atomic	memory	
operation	(remote	memory)

History	of	SHMEM
• Originator:	similar	time-frame	as	MPI

– SHMEM	in	1993	by	Cray	Research	(for	Cray	T3D)
– SGI	incorporated	Cray	SHMEM	in	their	Message	Passing	Toolkit	

(MPT)
– Quadrics	optimized	it	for	QsNet.	First	come	to	the	Linux	world
– Many	others:	GSHMEM,	University	of	Florida;	HP,	IBM,	

GPSHMEM	(ARMCI).
• Unlike	MPI,	SHMEM	was	not	defined	by	a	standard.	A	loose	

API	was	used	instead..
– In	other	words,	while	all	implementations	manipulated	similar	

concepts	they	were	all	different.
– A	push	for	standardization	was	necessary	(OpenSHMEM)

OpenSHMEM

• An	effort	to	create	a	standardized	SHMEM	
library	API	with	a	[clear]	well-defined	behavior

• SGI	SHMEM	API	is	the	baseline	for	
OpenSHMEM 1.0

• A	forum	to	discuss	and	extend	the	SHMEM	
standard	with	critical	new	capabilities
– http://openshmem.org/site/
– As	of	September	2016	the	Open	SHMEM	standard	
reached	version	1.3	

Everything	evolves	around
• Remote	Direct	Memory	Access	(RDMA)

– RDMA	allows	one	PE	to	access	certain	variables	of	
another	PE	without	interrupting	the	other	PE

– These	data	transfers	are	completely	asynchronous
– They	can	take	advantage	of	hardware	support

• Terminology
– PE:	processing	element,	a	numbered	process
– Origin:	process	that	performs	the	call
– Remote_pe:	process	on	each	the	memory	is	accessed
– Source:	array	which	the	data	is	copied	from
– Target:	array	which	the	data	is	copied	to

• The	key	concept	here	is	the	symmetric	variables
– Force	the	applications	to	be	SPMD

Symmetric	Variables
• Scalars	or	arrays	that	exists	with	the	same	size,	type,	
and	relative	address	on	all	PEs.

• They	can	either	be
– Global	(static	variables,	or	local	variables)
– Dynamically	allocated	and	maintained	by	the	SHMEM	
library

• With	little	help	from	the	Operating	System,	the	
following	types	of	objects	can	be	made	symmetric:
– Fortran	data	objects:	common	blocks	and	SAVE	attributes
– Non-stack	C	and	C++	variables
– Fortran	arrays	allocated	with	shpalloc
– C	and	C++	data	allocated	by	shmalloc

Example	(dynamic	allocation)
int main	(void)	
{	
int *x;	
…	
start_pes(4);	
…	
x	=	(int*)	shmalloc(sizeof(x));	
…	
shmem_barrier_all();	
…	
shfree(x);	
return	0;	

}	

x

PE	0

x

PE	1

x

PE	2

x

PE	3

OpenSHMEM primitives
• Initialization	and	Query
• Symmetric	Data	Management
• Data	transfers:	puts	and	gets	(RDMA)
• Synchronization:	barrier,	fence,	quiet
• Collective:	broadcast,	collection	(allgather),	reduction
• Atomic	Memory	Operations

– Mutual	Exclusion
– Swap,	add,	increment,	fetch

• Distributed	Locks
– Set,	free	and	query

• Accessibility	Query	Routines
– PE	accessible,	Data	accessible

Main	Concept

• As	the	data	transfers	are	one-sided,	it	is	
difficult	to	maintain	a	consistent	view	of	the	
state	of	the	parallel	application
– Only	local	completion	is	known,	and	only	in	some	
cases

– Example:	put	operation

• Synchronization	primitives	should	be	used	to	
enforce	completion	of	communication	steps

Initialization	and	Query
• void	start_pes(int npes);
• int shmem_my_pe(void);	
• int shmem_n_pes(void);
• void	shmem_finalize(void);	
• void	shmem_global_exit(int status);	
– Allows	any	PE	to	abort	the	entire	application

• Similar	to	MPI_Abort
• int shmem_pe_accessible(int pe);	
• int shmem_addr_accessible(void	*addr,	int pe);	
• void	*shmem_ptr(void	*target,	int pe);	
– Only	if	the	target	process	is	running	from	the	same	
executable	(symmetry	of	the	global	variables)	

Your	first	OpenSHMEM application
#include	<stdio.h>	
#include	<shmem.h>	/*	The	shmem header	file	*/	
int
main	(int argc,	char	*argv[])	
{
int nprocs,	me;	
start_pes (4);	
nprocs =	shmem_n_pes ();	me	=	shmem_my_pe ();	
printf ("Hello	from	%d	of	%d\n",	me,	nprocs);	return	0;	

}	

Hello	from	0	of	4
Hello	from	2	of	4	
Hello	from	3	of	4	
Hello	from	1	of	4	

Symmetric	Data	Management

• Allocate	symmetric,	remotely	accessible	blocks	(the	call	
are	extremely	similar	to	their	POSIX	counterpart)
– void	*shmalloc(size_t size);
– void	shfree(void	*ptr);
– void	*shrealloc(void	*ptr,	size_t size);
– void	*shmemalign(size_t alignment,	size_t size);
– extern	long	malloc_error;

• These	calls	are	collective,	which	means	all	processes	
involved	in	the	execution	must make	them
– This	is	a	simple	way	to	ensure	the	symmetry	of	all	
dynamically	allocated	variables

Remote	Memory	Access	- PUT
• void	shmem_<type>_p(<type>*	target,

<type>	value,	int pe);
void	shmem_<type>_put(<type>*	target,

const <type>	*source,	size_t len,	int pe);

• Type can	be:	floating	point	[double,	float],	integer	[short,	
int,	long,	longdouble,	longlong]

• void	shmem_putXX(void	*target,
const void	*source,	size_t len,	int pe);

• XX can	be:	32,	64,	128
• void	shmem_putmem(void	*target,

const void	*source,	size_t len,	int pe);
– Byte	level	function

Remote	Memory	Access	- PUT
• Moves	data	from	local	memory	to	remote	memory:

– Target:	remotely	accessible	object	where	the	data	will	be	moved
– Source:	local	data	object	containing	the	data	to	be	copied
– Len:	number	of	elements	in	the	source	(and	target)	array.	The	

type	of	elements	(from	the	function	name)	will	decide	how	
much	data	will	be	transferred

– Pe:	the	target	PE	for	the	operation
• If	there	is	only	one	data	to	copy	there	is	an	alias	

shmem_<type>_p
• Consecutive	PUT	are	not	guarantee	to	complete	in	order
• PUT	return	once	the	data	has	been	copied	away	from	the	

local	buffer	(but	not	necessarily	after	the	data	has	been	
delivered)

• Remote	completion	only	guarantee	after	synchronization

Example	- PUT
..	
long	source[10]	=	{	1,	2,	3,	4,	5,	6,	7,	8,	9,	10	};	
static	long	target[10];	

start_pes(2);	

if	(_my_pe()	==	0)	{	
/*	put	10	words	into	target	on	PE	1	*/	
shmem_long_put(target,	source,	10,	1);	

}	
shmem_barrier_all();	/*	sync	sender	and	receiver	*/	

if	(_my_pe()	==	1)	{	
for(i =	0;	i <	10;	i++)	
printf("target[i]	on	PE	%d	is	%d\n",	i,	_my_pe(),	target[i]);	

}	
…	

Without	synchronization	
the	target	PE	does	not	
know	when	the	data	is	
available

Target	should	be	in	a	
symmetric	memory

No	assumption	about	the	
order	of	operations	should	
be	made

Remote	Memory	Access	- IPUT

• void	shmem_<TYPE>_iput(<TYPE>	*target,
const <TYPE>	*source,	ptrdiff_t tstride,
ptrdiff_t sstride,	size_t nelems,	int pe);

• Same	idea	as	PUT	plus
– tstride:	the	stride	between	elements	on	the	target	
array

– sstride:	the	stride	between	elements	on	the	
source	array

0 1 2 3 4

source

sstride

0 1 2 3

target

tstride

4

Remote	Memory	Access	- GET
• <type>	shmem_<type>_g(<type>*	target, int pe);
void	shmem_<type>_get(<type>*	target,

const <type>	*source,	size_t len,	int pe);

• Type can	be:	floating	point	[double,	float],	integer	
[short,	int,	long,	longdouble,	longlong]

• void	shmem_getXX(void	*target,
const void	*source,	size_t len,	int pe);

• XX can	be:	32,	64,	128
• void	shmem_getmem(void	*target,

const void	*source,	size_t len,	int pe);
– Byte	level	function

Remote	Memory	Access	- GET

• Moves	data	from	remote	memory	to	local	memory:
– Target:	local	data	object	containing	the	data	to	be	copied
– Source:	remotely	accessible	object	where	the	data	will	be	
moved

– Len:	number	of	elements	in	the	source	(and	target)	array.	
The	type	of	elements	(from	the	function	name)	will	decide	
how	much	data	will	be	transferred

– Pe:	the	source	PE	for	the	operation
• If	there	is	only	one	data	to	copy	there	is	an	alias	
shmem_<type>_g

• Consecutive	GET	complete	in	order

Example	- GET
..	
long	source;	
static	long	target[10];	

start_pes(2);	
source	=	_my_pe();

if	(_my_pe()	==	0)	{	
/*	get	1	words	from	each	target	PE	*/
for(t	=	0;	t	<		_num_pe();	t++)
shmem_long_get(target	+	t,	&source,	1,	t);	

}	
shmem_barrier_all();	/*	sync	sender	and	receiver	*/	

if	(_my_pe()	==	0)	{	
for(i =	0;	I	<	_num_pe();	i++)	
printf("target[%d]	on	PE	%d	is	%d\n",	i,	target[i],	target[i]);	

}	
…	

No	need	for	
synchronization	after	the	
call.	The	call	is	blocking	it	
returns	once	the	operation	
is	completed

Target	should	be	in	a	
symmetric	memory

Consecutive	gets	
complete	in	order

..	
long	source;	
static	long	target[10];	

start_pes(2);	
source	=	_my_pe();

if	(_my_pe()	==	0)	{	
/*	get	1	words	from	each	target	PE	*/
for(t	=	0;	t	<		_num_pe();	t++)
shmem_long_get(target	+	t,	&source,	1,	t);	

}	
shmem_barrier_all();	/*	sync	sender	and	receiver	*/	

if	(_my_pe()	==	0)	{	
for(i =	0;	I	<	_num_pe();	i++)	
printf("target[%d]	on	PE	%d	is	%d\n",	i,	target[i],	target[i]);	

}	
…	

Example	- GET

Example	- GET
..	
long	source;	
static	long	target[10];	

start_pes(2);	
source	=	_my_pe();
shmem_barrier_all();	/*	sync	sender	and	receiver	*/	
if	(_my_pe()	==	0)	{	
/*	get	1	words	from	each	target	PE	*/
for(t	=	0;	t	<		_num_pe();	t++)
shmem_long_get(target	+	t,	&source,	1,	t);	

}	
shmem_barrier_all();	/*	sync	sender	and	receiver	*/	

if	(_my_pe()	==	0)	{	
for(i =	0;	I	<	_num_pe();	i++)	
printf("target[%d]	on	PE	%d	is	%d\n",	i,	target[i],	target[i]);	

}	
…	

Not	needed

This	barrier	is	needed	to	
ensure	proper	initialization	
for	source	on	all	Pes.

Remote	Memory	Access	- IGET

• void	shmem_<TYPE>_iget(<TYPE>	*target,	const
<TYPE>	*source,	ptrdiff_t tstride,	ptrdiff_t sstride,	
size_t nelems,	int pe);

• Expand	the	capabilities	of	GET	with
– tstride:	the	stride	between	elements	on	the	target	
array

– sstride:	the	stride	between	elements	on	the	
source	array

0 1 2 3 4

source

sstride

0 1 2 3

target

tstride

4

Non-blocking	RMA	operations

• Add	_nbi (_NBI	in	Fortran)	to	any	PUT	and	GET	
call
– The	transfer	order	is	issued,	but	no	assumptions	
about	the	data	transfers	should	be	made	until	the	
next	shmem_quiet.

– No	order	between	operations	is	enforced	in	the	
absence	of	more	specific	synchronizations	(such	as	
fence).

Remote	Memory	Access

• Put	vs.	Get
– Put	call	completes	when	data	is	“being	sent”
– Get	call	completes	when	data	is	“stored	locally”	

• Cannot	assume	put	data	has	been	transferred	
until	later	synchronization
– Data	still	in	transit	
– Partially	written	at	target
– The	delivery	of	words	in	a	put	operation	can	happen	
in	any	order

• Puts	allow	overlap
– Communicate /	Compute /	Synchronize	

Collective	Operations:	Barrier_all

• void	shmem_barrier_all(void)
– Barrier	between	all	PE.	All	operations	issued	
before	the	barrier	are	completed	upon	return.

– This	operation	complete	al	remote	
shmem_<type>_add	and	put.

Active	Sets
• What	if	not	all	processes	want	to	be	involved	in	an	

operation	?
– Think	2D	matrices	where	collective

behavior	is	desired	by	line	or	by	column
• It	provides	a	regular	definition	of	a	group	of	processes

– Composed	by	a	tuple
(start,	log	stride[power	of	2],	size	of	the	set)

– PE_start =	0,	logPE_stride =	0,	PE_size =	4
Set:	PE0,	PE1,	PE2,	PE3

– PE_start =	0,	logPE_stride =	1,	PE_size =	4
Set:	PE0,	PE2,	PE4,	PE6

– PE_start =	2,	logPE_stride =	2,	PE_size =	3
Set:	PE2,	PE6,	PE10

– {PEx,	where	x	=	PE_start +	k	*	2	^	logPE_stride,
with	k	=	0	..	PE_size}

0 1
4 5

2 3
6 7

7 8
B C

9 A
D E

Collective	Operations:	Barrier

• void	shmem_barrier(int PE_start,
int logPE_stride,	int PE_size,	long	*pSync)

• Define	a	barrier	on	a	log	(base	2)	group	of	PE
• pSync:	must	be	a	symmetric	array	of	type	long,	that	is	

dedicated	for	the	operation	(of	size	
__SHMEM_BARRIER_SYNC_SIZE).	Upon	entry	it	must	
contain	__SHMEM_SYNC_VALUE.	Upon	return	it	will	
contain	the	same	value.

• pSync is	used	internally	for	coordination	and	should	not	
be	modified	during	the	operation	on	any	PE.

Example:	
Barrier

#include	<stdio.h>
#include	<shmem.h>
long	pSync[_SHMEM_BARRIER_SYNC_SIZE];
int x	=	10101;

int main(void)
{
int me,	npes;
for	(int i	=	0;	

i	<	_SHMEM_BARRIER_SYNC_SIZE;	i	+=	1)	{
pSync[i]	=	_SHMEM_SYNC_VALUE;

}
start_pes(0);
me	=	_my_pe();
npes =	_num_pes();
if(me	%	2	==	0)	{
x	=	1000	+	me;
/*put	to	next even PE	in	a	circular fashion*/
shmem_int_p(&x,	4,	me+2%npes);
/*synchronize all	even pes*/
shmem_barrier(0,	1,	(npes/2	+	npes%2),	pSync);

}
printf("%d:	x	=	%d\n",	me,	x);
return	0;

}

Collective	Operations:	Broadcast

• void	shmem_broadcastXX(void	*target,
const void	*source,	size_t nlong,
int PE_root,	int PE_start,	int logPE_stride,
int PE_size,	long	*pSync);

– XX can	be	32	or	64
– Similar	concept	to	MPI_Bcast:	broadcast	a	block	of	
data	from	one	PE	to	others	PE

– The	participants	group	is	defined	bu the	PE_root,	
PE_start,	logPE_stride and	PE_size.

– The	PE_root is	a	zero-based	ordinal	with	respect	to	
the	active	set	of	participants

– pSync should	follow	the	same	rules	as	for	the	barrier

Collective	Operations:	Reductions

• void	shmem_<type>_<op>_to_all(
<type>	*dest,	<type>*source,	int nreduce,
int PE_start,	int logPE_stride,	int PE_size,
<type>*pWrk,	long	*pSync);
– Type	might	be:	short,	int,	long,	longlong,	float,	
double

– Op	might	be:	and,	or,	xor,	max,	min,	sum,	prod
– Dest and	source	must	not	overlap
– pWrk must	be	a	symmetric	array	of	the	same	size	
as	dest

Collective	Operations:	Gather
• void	shmem_collectXX(void	*target,

const void	*source,	size_t nelems,
int PE_start,	int logPE_stride,	int PE_size,
long	*pSync);

– In	C	XX might	be	32	or	64	(In	fortran 4,	8,	16,	32,	64)
• Concatenates	blocks	of	data	from	multiple	PEs	to	an	array	in	every	

PE	(similar	to	MPI_Allgather)
• The	group	of	participants	is	defined	by	the	PE_start,	logPE_stride

and	PE_size
• The	data	is	concatenated	based	on	the	PE	index	in	the	active	set
• 2 versions	depending	if	the	number	of	elements	is	the	same	on	all	

PE	(shmem_fcollectXX)	or	if	they	are	different	(shmem_collectXX)

Collective	Operations:	AlltoAll
• void	shmem_alltoallXX(void	*dest,

const void	*source,	size_t nelems,
int PE_start,	int logPE_stride,	int PE_size,
long	*pSync);

– In	C	XX might	be	32	or	64	(same	in	Fortran)
• each	PE	exchanges	a	fixed	amount	of	data	with	all	other	PEs	in	the	Active	

set	(similar	to	MPI_Alltoall)
• The	group	of	participants	is	defined	by	the	PE_start,	logPE_stride and	

PE_size
• The	data	is	concatenated	based	on	the	PE	index	in	the	active	set
• A	strided version	exists	(shmem_alltoallsXX)	where	you	can	specify	a	

stride	for	both	the	source	and	dest buffers	(basically	a	vector	of	length	1	
with	a	specified	stride)

Point-to-point	synchronizations

• void	shmem_<type>_wait(<type>	*var,
int value);

void	shmem_<type>_wait_until(<type>	*var,
int cond,	int value);

• Blocking	function	waiting	until	the	condition	
on	the	*var is	true	with	respect	to	the	value

• The	condition	can	be:	equal,	not	equal,	
greater	than,	less	or	equal	than,	less	than,	
greater	or	equal	to

Example
#include	<shmem.h>	
#define	GREEN	1
#define	RED	0

int light=RED;

int main(int argc,	char	**argv)	{
int me;	start_pes(0);
me	=	_my_pe();
if(me	==	0)	{

printf("me:%d.	Stop	on	Red	Light\n",	me);
shmem_int_wait(&light,	RED);	/*	Is	the	light	still	red?	*/
printf("me:%d.	Now	I	may	proceed\n",	me);

}	else	if(me	==	1)	{

sleep(10);
light=GREEN;
printf("me:%d.	I've	turn	light	to	green.\n",	me);
shmem_int_put(&light,	&light,	1,	0);	}	

return	0;
}	

Output:
me:0.	Stop	on	Red	Light
me:1.	I've	turned	light	to	green
me:0.	Now	I	may	proceed	

Memory	Ordering	Operations
• As	most	of	the	operations	are	not	synchronizing	there	
is	a	need	for	enforcing	ordering
– Basically	a	remote	happen-before	type	of	relationship	
between	code	blocks

– void	shmem_quiet(void):	wait	for	completion	of	all	
outstanding	Put,	AMO	and	store	operation	issues	by	the	PE

– void	shmem_fence(void):	assure	ordering	of	delivery	of	
Put,	AMO	and	store	operations.	All	operation	prior	to	the	
call	to	shmem_fence are	guaranteed	to	be	ordered	to	be	
delivered	before	any	subsequent	Put,	AMO	or	store	
operation.

• Beware:	the	meaning	of	these	synchronizations	are	
purely	local	(i.e.	barriers	are	needed	for	global	scope)

Example
#include	<stdio.h>
#include	<shmem.h>

long	target[10]	=	{0};
int	targ	=	0;
int main(void)
{
long	source[10]	=	{	1,	2,	3,	4,	5,	6,	7,	8,	9,	10	};
int	src	=	99;
start_pes(0);
if	(_my_pe()	==	0)	{
shmem_long_put(target,	source,	10,	1);	/*put1*/
shmem_long_put(target,	source,	10,	2);	/*put2*/
shmem_fence();
shmem_int_put(&targ,	&src,	1,	1);	/*put3*/
shmem_int_put(&targ,	&src,	1,	2);	/*put4*/

}
shmem_barrier_all();	/*	sync sender and receiver */
printf("target[0]	on	PE	%d	is %d\n",	_my_pe(),	target[0]);
return 1;

}

Example	
shmem_quiet

#include	<stdio.h>
#include	<shmem.h>

long	target[10]	=	{0};
int	targ	=	0;
int main(void)
{
long	source[10]	=	{	1,	2,	3,	4,	5,	6,	7,	8,	9,	10	};
int	src	=	99;
start_pes(0);
shmem_long_put(target,	source,	3,	1);
shmem_int_put(&targ,	&src,	1,	2);

shmem_quiet();

shmem_long_get(target,	source,	3,	1);
shmem_int_get(&targ,	&src,	1,	2);
return 0;

}

Example	
shmem_quiet

#include	<stdio.h>
#include	<shmem.h>

long	target[10]	=	{0};
int	targ	=	0;
int main(void)
{
long	source[10]	=	{	1,	2,	3,	4,	5,	6,	7,	8,	9,	10	};
int	src	=	99;
start_pes(0);
shmem_long_put(target,	source,	3,	1);
shmem_int_put(&targ,	&src,	1,	2);

shmem_quiet();

shmem_long_get(target,	source,	3,	1);
shmem_int_get(&targ,	&src,	1,	2);
return 0;

}

#include	<stdio.h>
#include	<shmem.h>

short	source[10]	=	{1,	2,	3,	4,	5,	6,	7,	8,	9,	10};

int main()	{
short	target[10];
int i,	me;
for	(i =	0;	i <	10;	target[i++]	=	666);
start_pes (0);

if	(1	==	(me	=	_my_pe ()))
shmem_short_iget (target,	source,	2,	1,	4,	0);	/*	s[0,1,2,3]	->	t[0,2,4,6]	*/

shmem_barrier_all ();	/*	sync	sender	and	receiver	*/
if	(me	==	1)
for	(i =	0;	i <	10;	i +=	1)
printf ("PE	%d:	target[%d]	=	%hd,	source[%d]	=	%hd\n",	me,	i,	target[i],	i,	source[i]);

shmem_barrier_all ();	/*	sync	before	exiting	*/
return	0;	}	

Iget example

Atomic	Memory	Operations	(AMO)

• One-sided	mechanism	that	combines	memory	
update	operations	with	atomicity	guarantee

• Two	types	of	AMO	routines:
– Non-fetch:	update	the	remote	memory	in	a	single	
atomic	operation.	No	completion	is	imposed	as	there	
is	no	local	return	value	related	to	the	operation.

– Fetch-and-operate:	combine	memory	update	and	
fetch	operations	in	a	single	atomic	operation.The
routines	return	after	the	data	has	been	fetched	and	
locally	delivered.

AMO:	fetch:	CSWAP

• <type>	shmem_<type>_cswap(<type>*	target,
<type>	cond,	<type>value,	int pe);

– type:	int,	long,	longlong
– The		function	returns	the	old	value	of	*target
– Target:	remotely	accessible	integer	data	object	to	
be	updated

– Cond:	the	value	to	be	compared	with.	If	the	
remote	target	and	the	cond value	are	equal,	then	
value	is	swaped into	the	remote	target.	
Otherwise,	the	remote	target	is	unchanged.

AMO:	fetch:	SWAP

• <type>	shmem_<type>_swap(<type>*	target,
<type>value,	int pe);

– type:	float,	double,	int,	long,	longlong
– The		function	returns	the	old	value	of	*target
– Target:	remotely	accessible	integer	data	object	to	
be	updated

– the	remote	target	is	swaped with	value	into	the	
remote	target

AMO:	fetch:	FINC,	FADD

• <type>	shmem_<type>_finc(<type>	*target,
int pe);

• <type>	shmem_<type>_fadd(<type>	*target,
<type>	value,	int pe);

– Atomic	fetch-and-increment/add	on	the	remote	
data	object	with	1/value

– Returns	the	previous	value	in	*target

AMO:	non-fetch:	INC,	ADD

• void	shmem_<type>_inc(<type>	*target,
int pe);

• void	shmem_<type>_add(<type>	*target,
<type>	value,	int pe);

– Atomic	increment/add	on	the	remote	data	object	
with	1/value

– Returns	…	nothing

Locking	Routines

• Similar	to	mutexes but	for	distributed	settings
– Work	in	First	Come	First	serve	mode

• void	shmem_clear_lock(volatile	long	*lock);	
– Release	the	owned lock

• void	shmem_set_lock(volatile	long	*lock);
– Acquire	the	lock,	blocks	until	the	lock	has	been	
released	by	the	prior	owner	and	succesfully acquired	
by	the	PE

• int shmem_test_lock(volatile	long	*lock);
– Return	1	if	the	lock	is	currently	owned	by	another	PE.	
Otherwise	the	lock	is	acquired	and	the	return	is	0.

Example
#include	<shmem.h>

long	L	=	0;

intmain(int argc,	char	**argv)	{	
intme,	slp =	1;
shmem_init();
me	=	shmem_my_pe();
shmem_barrier_all();

if	(me	==	1)	
sleep	(3);

shmem_set_lock(&L);
printf("%d:	sleeping	%d	second%s...\n",	me,	slp,	slp ==	1	?	""	:	"s");
sleep(slp);
printf("%d:	sleeping...done\n",	me);
shmem_clear_lock(&L);
shmem_barrier_all();
return	0;	}	

