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Process vs. Thread
• A process is a collection of 

virtual memory space, code, 
data, and system resources.

• A thread (lightweight process) 
is code that is to be serially 
executed within a process.

• A process can have several 
threads.

Threads executing the same block of code maintain 
separate stacks. Each thread in a process shares that 

process's global variables and resources.

Possible to create more efficient applications ?
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Hardware	Threads

• Hardware	control	switching	between	threads	
to	hide	latencies	(memory	accesses	/	
operations)
– Different	switching	policies:	cache	miss,	after	each	
operation

– Hardware	maintain	independent	state	for	each	
thread	(registers)

– Possible	to	switching	threads	in	one	cycle	(TERA	
machine)



Terminology
• Lightweight	Process	(LWP):	or	kernel	thread
• X-to-Y	model:	the	mapping	between	the	LWP	and	the	user	threads	

(1:X	– Unix	&	co.,	X:1	– User	level	threads,	X:Y – Windows	7).
• Contention	Scope:	how	threads	compete	for	system	resources
• Thread-safe	a	program	that	protects	the	shared	data	for	its	threads	

(mutual	exclusion)
• Reentrant	code:	a	program	that	can	have	more	than	one	thread	

executing	concurrently.
• Async-safe	means	that	a	function	is	reentrant	while	handling	a	

signal	(i.e.	can	be	called	from	a	signal	handler).
• Concurrency	vs.	Parallelism	- They	are	not	the	same!	Parallelism	

implies	simultaneous	running	of	code	(which	is	not	possible,	in	the	
strict	sense,	on	uniprocessor	machines)	while	concurrency	implies	
that	many	tasks	can	run	in	any	order	and	possibly	in	parallel.



Thread	vs.	Process
• Threads	share	the	address	space	of	the	process	that	created	it;	

processes	have	their	own	address	space.
• Threads	have	direct	access	to	the	data	segment	of	its	process;	

processes	have	their	own	copy	of	the	data	segment	of	the	parent	
process.

• Threads	can	directly	communicate	with	other	threads	of	its	
process;	processes	must	use	interprocess communication	to	
communicate	with	sibling	processes.

• Threads	have	almost	no	overhead;	processes	have	considerable	
overhead.

• New	threads	are	easily	created;	new	processes	require	
duplication	of	the	parent	process.

• Threads	can	exercise	considerable	control	over	threads	of	the	
same	process;	processes	can	only	exercise	control	over	child	
processes.

• Changes	to	the	main	thread	(cancellation,	priority	change,	etc.)	
may	affect	the	behavior	of	the	other	threads	of	the	process;	
changes	to	the	parent	process	does	not	affect	child	processes.

2.2.2	The	Classical	Thread	Model in Modern	Operating	Systems	3e by	Tanenbaum



Process vs. Thread
• Multithreaded applications must avoid two 

threading problems: deadlocks and races.
• A deadlock occurs when each thread is waiting 

for the other to do something.
• A race condition occurs when one thread 

finishes before another on which it depends, 
causing the former to use a bogus value 
because the latter has not yet supplied a valid 
one.



The key is synchronization

• Ordering memory accesses
– Flush / memory barrier
– Volatile (poor-man solution in C)

• Synchronization = gaining access to a shared resource.
• Synchronization REQUIRE cooperation.

x = 1;
barrier();
y = 5;
x = 2;

Thread	1

y = 1;
barrier();
while	(x==1)	;
printf( “%d\n”, y );

Thread	2



POSIX Thread

• What’s POSIX ?
– Widely used UNIX specification
– Most of the UNIX flavor operating systems

POSIX is the Portable Operating System 
Interface, the open operating interface 
standard accepted world-wide. It is 
produced by IEEE and recognized by ISO 
and ANSI.



Pthread API
Prefix Use

pthread_ Thread	management	(create/destroy/cancel/join/exit)

pthread_attr_ Thread	attributes

pthread_mutex_ Mutexes

pthread_mutexattr_ Mutexes attributes

pthread_cond_ Condition	variables

pthread_condattr_ Condition	attributes

pthread_key_ Thread-specific	data	key	(TLS)

pthread_rwlock_ Read/write	locks

pthread_barrier_ Synchronization	barriers



Thread	Management	(create)

Attributes:	Detached	or	joinable	state,	Scheduling	inheritance,	Scheduling	
policy,	Scheduling	parameters,	Scheduling	contention	scope,	Stack	size,	Stack	
address,	Stack	guard	(overflow)	size

int pthread_create (pthread_t *restrict	thread,																						[OUT]	thread	id
const pthread_attr_t *restrict	attr,									[IN]				attributes
void	*(*start_routine)(void	*),																	[IN]	thread	function
void	*restrict	arg)																																							[IN]	argument	for	thread	function

int pthread_exit (void	*value_ptr)																																														[OUT]	Return	to	caller/joiner
int pthread_cancel (pthread_t thread)																																						[IN]	thread	to	be	cancelled
int pthread_attr_init (pthread_attr_t *attr)																													[OUT]	attributes	to	be	initialized
int pthread_attr_set*(pthread_attr_t *restrict	attr,	*)											[IN]	set	attributed	(state,	stack)
int pthread_attr_destroy (pthread_attr_t *attr)																						[IN]	attributed	to	be	destroyed

Questions:
- Once	created	what	will	be	the	status	of	the	thread	and	how	it	will	be	scheduled	

by	the	OS	?	(use	sched_setscheduler)
- Where	it	will	be	run	?	(use	sched_setaffinity or	HWLOC)



Thread	Management	(join)

Join	blocks	the	calling	thread	until	the	target	thread	terminates,	and	returns	
it’s	thread_exit argument.
It	is	impossible to	join	a	thread	in	a	detached	state.	It	is	also	impossible	to	
reattach	it

int	pthread_join (pthread_t thread,
void	**value_ptr)																																							[OUT]	thread	return	value

int pthread_detach (pthread_t thread)
int pthread_attr_setdetachstate (pthread_attr_t *attr, [IN/OUT]	attribute

int detachstate)														[IN]	state	to	be	set
int pthread_attr_getdetachstate (const pthread_attr_t *attr,

int *detachstate)												[OUT]	detach	state	value



Thread	Management	(state)

The	POSIX	standard	does	not	dictate	the	size	of	a	thread's	stack	!

int pthread_attr_getstacksize (const pthread_attr_t *restrict	attr,
size_t *restrict	stacksize)

int pthread_attr_setstacksize (pthread_attr_t *attr,	size_t stacksize)
int pthread_attr_getstackaddr (const pthread_attr_t *restrict	attr,

void	**restrict	stackaddr)
int pthread_attr_setstackaddr (pthread_attr_t *attr,	void	*stackaddr)
pthread_t pthread_self (void)
int pthread_equal (pthread_t t1,	pthread_t t2)



Threading	- example
• Numerical	solution	to	Laplace’s	equation
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for j = 1 to jmax
for i = 1 to imax
Unew(i,j) = 0.25 * ( U(i-1,j) + U(i+1,j)

+   U(i,j-1) + U(i,j+1))
end for

end for



Threading	- example
• The	approach	to	make	it	parallel	is	by	
partitioning	the	data



Threading	- example
• The	approach	to	make	it	parallel	is	by	
partitioning	the	data

Overlapping the data boundaries 
allow computation without 
communication for each superstep

On the communication step each 
processor update the 
corresponding columns on the 
remote processors.



Threading	- example
for j = 1 to jmax
for i = 1 to imax
unew(i,j) = 0.25 * ( U(i-1,j) + U(i+1,j)

+   U(i,j-1) + U(i,j+1))
end for

end for



Memory	Consistency	Models
Memory	Level Size Response

CPU	registers ≈	100B 0.5ns	(1 cycles)

L1	Cache 64KB	– 1M 1ns	(few	cycles)

L2	Cache ≈	1-30 MB 10ns	(tens	of	cycles)

Main	Memory ≈	? GB 150ns	(hundreds of	cycles)

Hard	Disk ≈	? TB 10ms	(thousands	of	cycles)

Network	Storage ≈ ?	PB 100ms	to 1s	(much	more)

• Defining	a	consistent	memory	models	is	difficult	
and	not	necessarily	required	for	correctness
– Weaker	definitions	that	are	easier	to	implement	and	
good	enough	to	implement	predictable	and	
deterministic	applications



Strict	(atomic)	consistency
• Definition:	any	read	to	a	memory	location	X	
returns	the	value	stored	by	the	most	recent	
write	operation	to	X
– the	most	recent	covers	all	computing	units	in	the	
system
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Sequential	Consistency
• Definition:	the	result	of	any	execution	is	the	
same	as	if	the	reads	and	writes	occurred	in	
some	order,	and	the	operations	of	each	
individual	processor	appear	in	this	sequence	
in	the	order	specified	by	its	program
– Lamport ordering
– expanding	from	the	sets	of	reads	and	writes	
that actually happened	to	the	sets	that could have	
happened,	we	can	reason	more	effectively	about	
the	program
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Sequential	Consistency
x =	1	[W(x)	1]

P1
?x	… [R(x)	?]
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Cache	coherency	is	NOT
sequential	consistency	
because	seq.	consistency	
requires	a	globally consistency	
view	of	memory	operations	
while	cache	coherency	only	
requires	them	locally



Cache	Coherence
P1 W(x)	1

P2 R(x)	0 R(x)	2

P3 W(x)	2

P4 R(y)	0 R(y)	1

W(y)	2

W(y)	1

R(y)	0

R(x)	1

R(y)	1
Can’t	happen	with	a	snoopy-cache	
scheme	but	it	can	with	a	directory-
based	cache

Types	of	memory	accesses:
• Shared	Access:	we	can	have	shared	access	to	variables vs. private	access.	But	

the	questions	we're	considering	are	only	relevant	for	shared	accesses.
• Competing vs. Non-Competing:	If	we	have	two	accesses	from	different	

processors,	and	at	least	one	is	a	write,	they	are	competing	accesses.	They	are	
considered	as	competing	accesses	because	the	result	depends	on	which	
access	occurs	first	(if	there	are	two	accesses,	but	they're	both	reads,	it	
doesn't	matter	which	is	first).

• Synchronizing vs. Non-Synchronizing:	Ordinary	competing	accesses,	such	as	
variable	accesses,	are	non-synchronizing	accesses.	Accesses	used	in	
synchronizing	the	processes	are	(of	course)	synchronizing	accesses.

• Acquire vs. Release:	Finally,	we	can	divide	synchronization	accesses	into	
accesses	to	acquire	locks,	and	accesses	to	release	locks.



Weak	Consistency
• Weak	consistency	results	if	we	only	consider	competing	

accesses	as	being	divided	into	synchronizing	and	non-
synchronizing	accesses,	and	require	the	following	properties:
– Accesses	to	synchronization	variables	are	sequentially	consistent.
– No	access	to	a	synchronization	variable	is	allowed	to	be	performed	

until	all	previous	writes	have	completed	everywhere.
– No	data	access	(read	or	write)	is	allowed	to	be	performed	until	all	

previous	accesses	to	synchronization	variables	have	been	performed.

P2 R(x)	0 R(x)	2 S R(x)	2
P3 R(x)	1 R(x)	2S

P1 W(x)	1 W(x)	2 S



Release	consistency
• Weak	Consistency	(via	synchronization)	requires	that	when	a	

synchronization	occurs,	all	processors	globally	update	memory	–
each	local	change	must	be	propagated	to	all	processors	with	a	copy	
of	the	shared	variable,	and	each	processor	need	to	obtain	all	
changes	from	the	others

• Release	consistency	consider	finer	grain	locks	of	memory	regions,	
and	only	propagates	the	locked	memory	(as	needed)
– Before	an	ordinary	access	to	a	shared	variable	is	performed,	all	

previous	acquires	done	by	the	process	must	have	completed	
successfully.

– Before	a	release	is	allowed	to	be	performed,	all	previous	reads	and	
writes	done	by	the	process	must	have	completed.

– The	acquire	and	release	accesses	must	be	sequentially	consistent.



Mutual exclusion

• Simple lock primitive with 2 states: lock 
and unlock

• Only one thread can lock the mutex.
• Several politics: FIFO, random, 

recursive

lock

unlock
…

…
Thread 1

lock

unlock
…

…
Thread 2

lock

unlock
…

…
Thread 3

Active threads



Mutual exclusion

• Simple lock primitive with 2 states: lock 
and unlock

• Only one thread can lock the mutex.
• Several politics: FIFO, random, 

recursive

lock

unlock
…

…
Thread 1

lock

unlock
…

…
Thread 3

Active threads

lock

unlock
…

…
Thread 2



Mutual exclusion

• Simple lock primitive with 2 states: lock 
and unlock

• Only one thread can lock the mutex.
• Several politics: FIFO, random, 

recursive

lock

unlock
…

…
Thread 1

lock

unlock
…

…
Thread 3

Active threads

lock

unlock
…

…
Thread 2



Mutual exclusion

• Simple lock primitive with 2 states: lock 
and unlock

• Only one thread can lock the mutex.
• Several politics: FIFO, random, 

recursive

lock

unlock
…

…
Thread 1

lock

unlock
…

…
Thread 3

Active threads

lock

unlock
…

…
Thread 2



Mutual exclusion

• Simple lock primitive with 2 states: lock 
and unlock

• Only one thread can lock the mutex.
• Several politics: FIFO, random, 

recursive

lock

unlock
…

…
Thread 1

lock

unlock
…

…
Thread 3

Active threads

lock

unlock
…

…
Thread 2



Mutual exclusion

• Simple lock primitive with 2 states: lock 
and unlock

• Only one thread can lock the mutex.
• Several politics: FIFO, random, 

recursive

lock

unlock
…

…
Thread 1

lock

unlock
…

…
Thread 3

Active threads

lock

unlock
…

…
Thread 2



Mutual exclusion
• Spin vs. sleep ?
• What’s the desired lock grain ?

– Fine grain – spin mutex
– Coarse grain – sleep mutex

• Spin mutex: use CPU cycles and increase 
the memory bandwidth, but when the 
mutex is unlock the thread continue his 
execution immediately.



Shared/Exclusive Locks
• ReadWrite Mutual exclusion 
• Extension used by the reader/writer model
• 4 states: write_lock, write_unlock, read_lock and 

read_unlock.
• multiple threads may hold a shared lock 

simultaneously, but only one thread may hold an 
exclusive lock. 

• if one thread holds an exclusive lock, no threads 
may hold a shared lock.



Shared/Exclusive Locks
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Shared/Exclusive Locks
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Condition Variable

• Block a thread while waiting for a condition
• Condition_wait / condition_signal
• Several thread can wait for the same 

condition, they all get the signal
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Semaphores
• simple counting mutexes
• The semaphore can be hold by as many 

threads as the initial value of the 
semaphore.

• When a thread get the semaphore it 
decrease the internal value by 1.

• When a thread release the semaphore it 
increase the internal value by 1.
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Atomic instruction
• Is any operation that a CPU can perform such 

that all results will be made visible to each CPU 
at the same time and whose operation is safe 
from interference by other CPUs
– TestAndSet
– CompareAndSwap
– DoubleCompareAndSwap
– Atomic increment
– Atomic decrement



Example:	A	Producer	– Consumer	
Queue

• We	have	a	bounded	queue	where	
producers	store	their	output	and	
from	where	consumers	take	their	
input

• Protect	the	structure	against	
intensive	unnecessary	accesses
– Detect	boundary	conditions:	queue	
empty	and	queue	full
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…consumers



Example:	dot-product

• Divide	the	arrays	between	participants	
to	load-balance	the	work
– Each	will	then	compute	a	partial	sum

• Add	all	the	partial	sums	together	for	
the	final	result	(reduce	operation)

• Technical	details:	cost	of	managing	the	
threads	vs.	cost	of	the	algorithm?	How	
to	minimize	the	management	cost?

Scalar	product,	inner	product
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