Why Parallel Computing?

George Bosilca
bosilca@icl.utk.edu

LICL
INNOVATIVE

COMPUTING LABORATORY

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE

» Simulation: The Third Pillar of Science

 Traditional scientific and engineering parad|gm

» Do theory or paper design.
» Perform experiments or build system.
* Reiterate

 Limitations:
» Too expensive - build a throw-away passenger jet
« Too difficult - build a large wind tunnel
» Too slow - wait for the outcome to become available (climate change)

» Too dangerous - weapons, drugs, medical treatement, climate experimentation

« Computational science

« Theory and models

» Together with efficient numerical models can cut development time and cost
dramatically

* Requires a lot of computational power: High Performance Computers

B /7 1% VAR Q. N

— T 7 || NasE
Al S

v ARV

> Units of Measures

« High Performance Computing (HPC) units are:

 Flop: floating point operation, usually double precision unless noted - Flop/s:
floating point operations per second

» Bytes: size of data (a double precision floating point number is 8)

 Typical sizes are millions, billions, trillions...
Mega Mflop/s = 1076 flop/s Mbyte = 2720 = 1048576 ~ 10™6 bytes
Giga Gflop/s = 10"9 flop/s Gbyte = 2230 ~ 1079 bytes
Tera Tflop/s = 10"12 flop/s Tbyte = 240 ~ 10”12 bytes
Peta Pflop/s = 10™15 flop/s Pbyte = 2750 ~ 10715 bytes
Exa Eflop/s = 10™18 flop/s Ebyte = 2260 ~ 10”18 bytes
Zetta Zflop/s = 10721 flop/s Zbyte = 2770 ~ 10721 bytes

Yotta Yflop/s = 10724 flop/s Ybyte = 2780 ~ 10724 bytes

« Current fastest (public) machine ~ 125 Pflop/s

» Up-to-date list at www.top500.org

B /7 1% VAR Q. N

s 1 1 d
Moore’s Law — The number of transistors on integrated circuit chips (1971-2016)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.
’ This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are

strongly linked to Moore's law.

201000:0001000 IBM z13 Storage Controller.

10,000,000,000 18-core Xeon Haswell-E5 \OSPARC M7
Xbox One main SQC\\ 1? 02)2<»cor? Xe;ﬁdaro;iwe"{s
y ©:000,000.000 i g § gereien o

M z
8-core Xeon Nehalem-EX~_ Apple A8X (tri-core ARM64 "mobile SoC")
Sixicore X Vo 8 8 LS 8 &R15% MABIPIE Core 7 Broadwell-u
Dual-core ltanium 2@ ‘Quad-core + GPU GT2 Core i7 Skylake K

1 ’000,000‘000 Pentium D Presler\POWE§ . P g L 4 ’ Y °Quad»core + GPU Core i7 Haswell
C

Itanium 2 with, Apple A7 (dual-core ARM64 "mobile SoC")
ore i7 (Quad)

9 MB cacheqy (Quad)
AMD K1 - 2M L
500,000,000 Itanium 2 Madison 6M€p SLN KBS 8
Pentium D Smithfield ore 2 Duo Conroe
Itanium 2 McKinley €y E-3 ell” €@ Core 2 Duo Wolfdale 3M

Pentium 4 Prescott-2M€py ‘\OCore 2 Duo Allendale

100,000,000 AMDKE® o s prescoh
Pentium 4 Northwoo
= 50,000,000 Pontum 4 Wilmotod @0, P8I @aom
=} Pentium Il Mobile Dixon.) ©ARM Cortex-A9
8 AMD K7 € € Pentium Ill Coppermine
o AMD K6-III
,‘% 10,000,000 pemiumpr:i[)iﬁiu @Pentim il Kaimi
% 5,000,000 Pentimg, o r;lsamath
= SAY110
| = Intel 80486, o
| 1,000,000 h 4 R4000
| 500,000 SRR AR 2
Intel 80386 Intel o € ARM 3
| Motorola 68020 ¢ ¢ Gog
| 3 : WRL
1 00’000 Mgé%ofllao Intel 30286 MultiTitan gArgD%‘
50,000 Qintel 80186
Intel 80864¢p € Intel 8088 o, FgAArM 2 e
Co @
10,000 TMSjooo ZiogZeg M%%;o'é"a w%o 690816 Novir
RCA 1802 65002
51000 Intel 8008, Intel SOBrl‘]tel 88
MOS Technol
inel 4904 Vgigg 07 =
1,000
PRSI T LSS TP FFE L0
S F S FFF S S S S S S S SS

Year of introduction

Moore’s Law (Gordon Moore co-founder of Intel)
"Number of devices/chip doubles every 18

months” He did not stated that the
| performance doubles every
- Good. So what ... 18 months

THE UNIVERSITY OF
GICL el TaRnEssEE

L ANV

Denhard Scaling

* Dennard observed that voltage and current should be
proportional to the linear dimensions of a transistor

« Decrease feature size by a factor of A and decrease
voltage by a factor of A; then # transistors increase by
A2 and clock speed increases by A
« But the energy consumption does not change

« Unfortunately there is a catch: as feature size
decreases, current leakage poses greater challenges,
and causes the chip to heat up

« Challenge: powering the transistors without melting the chip

B /7 1% VAR Q. N

T 7 ||| NasE
Al S

10,000,000,000
1,000,000,000
100,000,000

. 10,000,000
1,000,000

100,000

10,000

1,000

| 100
| 10

| 1
0
i

s 1 1 d

Dennard Scaling

[| | 2,200,000,000
===Chip Transistor Count /
«==Chip Power] |

Moore’s Law
2300 Breakdown: too hot to run
|
130w
05w

1970 1975 1980 1985 1990

1995 2000 2005 2010 2015

7

THE UNIVERSITY OF
$GICL Ry TENNESSE

s 1 1 d

}Dennard Scaling

_10.000.000.000 - | | 2.200,000,000
broke

Multicore Era
3.5 GHz
| e

Single-core Era

2003

2004

17719 12779 170V 1700 172V 17279 (A V. V]V (A V V20 (A VIRV [AVERS)

Data from Jack Dongarra

THE UNIVERSITY OF ‘;l
OICL pyTENNESSEE |

LN ARV

Frequency Scaling replaced by Scaling cores/chip

1.E+07
Power 1s the root cause of all this .
1.E+06 _ _ S
¢ Transistors (in Thousands) $
4 S
1.E+05 ® Frequency (MHz) 40
.
Power (W) .
1.E+04 -
® Cores
T (GRS L S
»
o . -~ 4 L » [
A hardware issue just became a -
»
software problem u o L
»
ne u
1.E+01
s n ®
1.E+00 < v >
1.E-01 ‘ ‘ ‘ ‘ ‘ ‘ ‘
1970 1975 1980 1985 1990 1995 2000 2005 2010

Slide from Kathy Yelick

T T /AN T\ ywTTmmmT™

)

J

B]]

Moore’s Law reinterpreted

« Number of cores per
chip doubles every 2
years, while clock
speed decreases
(remains constant in
the most optimistic
scenarios)

« Number of threads of execution
doubles every 2 years

« Need to deal with systems with
millions of concurrent threads

Average Number of Cores Per
Supercomputer

$ICL

r— ar el /7 A VA% QW N

> Top 500

1 Eflop/s
100 Pflop/s

10 Pflop/s

1 Pflop/s
100 Tflop/s

10 Tflop/s

1 Tflop/s
100 Gflop/s

10 Gflop/s

1 Gflop/s

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

L * L

Tflop/s Pflop/s Eflop/s /,

Sandla NL LOS AlamosNL = KNOXVILLE

e 7 B CAR O N

N

U A BV

Parallel computing
models and their
performances

==\ \

A high level exploration of the
HPC world

George Bosilca
bosilca@icl.utk.edu

LICL
INNOVATIVE

COMPUTING LABORATORY

T

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE

LN ARV

} Overview
f

|+ Definition of parallel application
» Architectures taxonomy

« What is quantifiable ? Laws managing the
parallel applications field

» Modeling performance of parallel applications

il sl 7 S VA% O

I U ARV

}Formal definition of parallelism

The Bernstein Conditions Let’s define:
* [(P) all variables, registers and memory locations used by P
* O(P) all variables, registers and memory locations written by P
Then P1; P2 1s equivalent to P1 || P2 if and only if
{IP1)N"OP2) =T &I(P2) nOP1)=C & O(P1) N O(P2) =D}
General case: P1... Pn are parallel if and only 1f
each for each pair P1, Pj we have P1 || Pj.

3 limit to the parallel applications:
1. Data dependencies
2. Flow dependencies
3. Resources dependencies

LN ARV

}Data dependencies i W
f

I[1: A=B+C A
2: E=D+A

3: A=F+G A CS
$5)

— Flow dependency (RAW): a variable assigned in a statement
1s used 1n a later statement

— Anti-dependency (WAR): a variable used in a statement 1s
assigned 1n a subsequent statement

Output dependency (WAW): a variable assigned in a statement
1s subsequently re-assigned

How to avoid them?
Which type of data dependency can be avoided ?

el // U VA% QW W

(IGL TTTTTTTTTTTTTTT s
LLLLLLLLL
‘4] ,

I1:
12:
I3:
14:

U ARV

Flow dependencies

A=B+C

if(A) {
D=E+F)

G=D+H

Data dependency
Control dependency

How to avoid ?

o | 1 d

> Resources dependencies

II:. A=B+C 2 ﬁ
[2: G=D+H
|

How to avoid ?

B] |

}A more complicated example (loop)

fori=0to 9
Ali] = BJi]

All statements
are independent,
as they relate to
different data.
They are
concurrent.

222222222
CRNB A RGN

fori=1t09
Ali] = A[i-1]

= O

1 All statements

I
RN O A WN =

are dependent,
as every 2
statements are
strictly
sequential.

SICL I |

—— AT T 27N U

LN ARV

}A real example

|
fori=0to N
sum += do_work(A[i]) i

this computation ?
 What if N is really big ?

» What if the duration of do_work is data E
dependent ? §
/

» Assuming we have p cores how do we parallelize
|
|

SE———]] 4

} Flynn Taxonomy (1966)

» Computers classified by instruction delivery mechanism

and data stream(s)
» [for instruction, P for program. Conceptually similar, technically at a different

o4 chag;zuclia;rt: code: 2 for instruction stream and 2 for data

stream
1 Instruction > 1 Instruction
flow flow

1 data SISD MISD

stream Von Neumann |pipeline

> 1 data SIMD MIMD

stream

r— el /7 A VA% QW N

‘ ch TTTTTTTTTTTTTTT s
AN\ - ,

L ANV

Flynn Taxonomy: Analogy

.+ SISD: assembly line work (no parallelism)

|+ SIMD: systolic, GPU computing (vector
computing MMX, SSE, AVX)

* MISD: more unusual type. Safety requirements,
replication capabilities, think space shuttle.

 MIMD: airport facility, several desks working at
their own pace, synchronizing via a central
entity (database). Most distributed algorithms,
as well as multi-core applications.

B /7 1% VAR Q. N

)

J

B]]

Definitions

» Task vs Data parallelism

« Task parallelism: different tasks are carried out by different computational units on
the same data

» Data parallelism: each computational unit is applying the same task on different
data

« Concurrent computing: multiple independent tasks
progress at any instant

 Parallel computing: multiple tasks cooperate closely to
solve a problem

 Distributed Computing: multiple programs cooperate
closely to solve a problem

* No agreement on parallel vs. distributed computing

SICL I |

LN ARV

}Amdahl Law

 First law of parallel applications (1967)
 Limit the speedup for all parallel applications

« Assume fixed problem size

S+ p

speedup =
h— S+ %

— ,
Processors
Speedup = (1 - a)

N = number of F
v a-+ N »

/
TTTTTTTTTTTTTTT)
$ICL o TENNESSEE |

BN ARV

Amdahl Law

Speedup is bound by 1/a.

Speedup

T T T T
0% 1% 2% 3% 4%

Serial Fraction

FIGURE 1. Speedup under Amdahl’s Law

THE UNIVERSITY OF

$ICL .;&EMESSEE

LN ARV

}Amdahl Law
|

« Bad news for parallel applications
» 2 interesting facts:

« We should limit the sequential part

« A parallel computer should be a fast sequential computer to be able to
resolve the sequential part quickly

« What about increasing the size of the initial
problem ?

il sl 7 S VA% O

(IGL TTTTTTTTTTTTTTT s
LLLLLLLLL
‘4] ,

LN ARV

}Gustafson’s Law
f

e Less constraints than the Amdahl law.

 In a parallel program the quantity of data to
0€e processed increase, so the sequential
nart decrease.

t=s+P/n

P=a*n

s+a*n

}>qwawp=
s+ a

a —> © = speedup —> n

et sl 7 S VA% O

BN ANV

Gustafson’s Law

* The limit of Amdahl Law can be transgressed
If the quantity of data to be processed
Increase.

speedup = n+ (1 —-n)s

£ICL

« Superlinear speedup ? Superlinear

Sub-linear

Sometimes superlinear speedups can be observed! |
« Memory/cache effects
 More processors typically also provide more memory/cache. f
* Total computation time decreases due to more page/cache hits. :

» Search anomalies |
* Parallel search algorithms. g
« Decomposition of search range and/or multiple search strategies.
* One task may be "lucky" to find result early. (

J
R Do iR R oF :
SICL piEn
7\ \ 4P o & Iy

L ANV

> Parallel execution models

and laws define the limits
without taking in account the properties of the
computer architecture

* They can only loosely be used to predict (in fact
mainly to cap) the real performance of any
parallel application

« We should integrate in the same model the
architecture of the computer and the
architecture of the application

B /7 1% VAR Q. N

LN ARV

}What are models good for ?

~ » Abstracting the computer properties
' « Making programming simple
« Making programs portable ?

 Reflecting essential properties

* Functionality
« Costs

 What is the von-Neumann model for parallel
architectures ?

LN ARV

Parallel Random Access Machine

» World described as a collection of synchronous
nrocessors which communicate with a global

shared memory unit.

« A collection of numbered RAM processors (P;)
« A collection of indexed memory cells (M[i])

« Each processor P, has it’'s own unbounded local memory (registers) and knows
it’s index (rank)

« Each processor can access any shared memory cell in unit time

* |nput and output of a PRAM algorithm consist in
N distinct items

« A PRAM instruction consist in 3 synchronous steps:
read (acquire the input data), computation, write
(save the data back to a shared memory cell).

- Exchanging data is realized through the writing and reading of memory cells

Y Vet S Vs

LN ARV

Parallel Random Access Machine

 Algorithmic Complexity:
- Time = the time elapsed for P, computations
« Space =the number of memory cells accessed

« Specialized in parallel algorithms

- Natural: the number of operations per cycle on N processors is at most N

- Strong: all accesses are realized in a single time unit

« Simple: keep the complexity and correctness overheads low y abstracting all

communication or synchronization overheads

The PRAM corresponds intuitively to the programmers' view of
a parallel computer: it ignores lower level architectural
constraints, and details, such as memory access contention and
overhead, synchronization overhead, interconnection network
throughput, connectivity, speed limits and link bandwidths, etc.

£I10L

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE

Y Vet S Vs

8 5y | 1 4

KBulk Synchronous Parallel - BSP

Valiant 1990

 Differs from PRAM by taking in account
communications and synchronizations and by
distributing the memory across participants

: Components capable of computing or executing
A routing messages between components

: A support for

P/M

P/M

memory transactions

on all or a sub-group of components

P/M

P/M

» Each processor can access his own memory
without overhead and have a uniform slow
access to remote memory

$ICL

— /A% T\ WY

—————
-,

N AV

BSP Superstep

* Applications composed by Supersteps
separated by global synchronizations.

« A superstep contains:

« A computation step
« A communication step
« A synchronization step

Synchronization used to insure that all processors complete the
computation + communication steps in the same amount of time.

As communications are remote memory accesses (one sided) there are
no synchronizations during the computation + communication step

> BSP - Global View

))

SuI[auILL

£ICL

L ANV

BSP4 - The communication step

iIndividual actions, butasaw
* The goal being to define an u

« h = the maximum number of

nole (per step)

 BSP consider communication not at the level of

oper bound on the
time necessary to complete all data movements

messages

(lncoming or outgoing) per superstep
« 8 = the network capability to deliver messages

« |t takes hg time for a processor to deliver h messages of size 1
« A message of size m takes the same time to send as m messages of size 1

B /7 1% VAR Q. N

P P
9\ \

B] |

}BSP - The synchronization cost

* The cost of synchronization is noted by [and is
generally determined empirically

« With the increase in scale of the computing
resources, the synchronizations are becoming
the main bottleneck

« Removing them might introduce deadlock or livelock
« Decrease the simplicity of the model

SICL I |

—— AT T 27N U

LN ARV

}BSP - Compute the cost

| Tsuperstep = max._;(w;) + g * max;_;(h;) +1
=—w+g*xh+1
Where:

w = max of computation time

g = 1/(network bandwidth)

h = max of number of messages
| = time for the synchronization

S
Tiotal = 23:1 Tsuperstep

)
‘ ICL TTTTTTTTTTTTTTT ;
W TSR Bl KNOXVILLE
\d : .

« An algorithm can be described using only w, h
and the problem size.

« Collections of algorithms are available

depending on the computer characteristics.

« Small L
« Small g

* The best algorithm can be selected depending
on the computer properties.

— - sl ~ 1S Y% QW N

L AWIEER YV

BSP - example

- Numerical solution to Laplace’ s equation

Ut = I(U” UL AU UL

i+1

O 3 e for j = 1 to jmax
1 1 for1=1 to imax
O O @ Unew(i,j) = 0.25 * (U(i-1,j) + U(i+1,j)
+ U@y-1) +U@g+1))
® @ O end for
L-1 end for

£ICL

E

L AWIEER YV

> BSP - example

* The approach to make it parallel is by
partitioning the data

TTTTTTTTTTTTTTT

LA ESREE
3

£ICL

LN ARV

} BSP - example
i

* The approach to make it parallel is by
partitioning the data

Overlapping the data boundaries
allow computation without
communication for each superstep

2% QW N

On the communication step each

processor update the

corresponding columns on the J
remote processors.

J
}
(IGL TTTTTTTTTTTTTTT ;
LLLLLLLLL
\ - 5

L AWIEER YV

> BSP - example

for j =1 to jmax
for 1 =1 to 1max
unew(1,)) = 0.25 * (U@1-1,)) + UQ+1,))
+ U(i,-1) + UG,+1))
end for
end for
1f me not O then
bsp put(to the left) E
endif |
1f me not NPROCS — 1 then
bsp put(to the right)
Endif

bsp sync()

‘ IcL TTTTTTTTTTTTTTT
W \
3

LN ARV

} BSP - example
i

Tsupe'rstep =W+ g * h+1

h = max number of messages
= N values to the left +
N values to the right
=2 * N (ignoring the inverse communication!)
w=4*N*N/p

Touperstep = 4% 2 + 2% g« N +1

2z B O\ W

B] |

} BSP - example

« BSP parameters for a wide variety of

architectures has been published.

Machine S p I g
Origin 2000 101 4 1789 10.24
32 39057 66.7
Cray T3E 46.7 |4 357 1.77
16 751 1.66
Pentium 10Mbit 61 4 139981 1128.5
8 826054 2436.3
Pentium I 38 4 27583 39.6
100Mbit 8 38788 38.7

£I10L

—— AT T 27N U

