Why Parallel Computing?

George Bosilca

bosilca@icl.utk.edu

TENNESSEE
knoxville

Simulation: The Third Pillar of Science

- Traditional scientific and engineering paradigm:

- Do theory or paper design.
- Perform experiments or build system.
- Reiterate
- Limitations:
- Too expensive - build a throw-away passenger jet
- Too difficult - build a large wind tunnel

- Too slow - wait for the outcome to become available (climate change)
- Too dangerous - weapons, drugs, medical treatement, climate experimentation
- Computational science
- Theory and models
- Together with efficient numerical models can cut development time and cost dramatically
- Requires a lot of computational power: High Performance Computers

Units of Measures

- High Performance Computing (HPC) units are:
- Flop: floating point operation, usually double precision unless noted - Flop/s: floating point operations per second
- Bytes: size of data (a double precision floating point number is 8)
- Typical sizes are millions, billions, trillions...

Mega	Mflop $/ \mathrm{s}=10^{\wedge} 6 \mathrm{flop} / \mathrm{s}$	Mbyte $=2^{\wedge} 20=1048576 \sim 10^{\wedge} 6$ bytes
Giga	Gflop $/ \mathrm{s}=10^{\wedge} 9 \mathrm{flop} / \mathrm{s}$	Gbyte $=2^{\wedge} 30 \sim 10^{\wedge} 9$ bytes
Tera	Tflop $/ \mathrm{s}=10^{\wedge} 12 \mathrm{flop} / \mathrm{s}$	Tbyte $=2^{\wedge} 40 \sim 10^{\wedge} 12$ bytes
Peta	Pflop $/ \mathrm{s}=10^{\wedge} 15$ flop $/ \mathrm{s}$	Pbyte $=2^{\wedge} 50 \sim 10^{\wedge} 15$ bytes
Exa	Eflop $/ \mathrm{s}=10^{\wedge} 18$ flop $/ \mathrm{s}$	Ebyte $=2^{\wedge} 60 \sim 10^{\wedge} 18$ bytes
Zetta	Zflop/s $=10^{\wedge} 21$ flop $/ \mathrm{s}$	Zbyte $=2^{\wedge} 70 \sim 10^{\wedge} 21$ bytes
Yotta	Yflop/s $=10^{\wedge} 24$ flop $/ \mathrm{s}$	Ybyte $=2^{\wedge} 80 \sim 10^{\wedge} 24$ bytes

- Current fastest (public) machine ~ 125 Pflop/s
- Up-to-date list at www.top500.org

Smaller,

better, harder

20,000,000,000
10,000,000,000
5,000,000,000

1,000,000,000
500,000,000

Moore's Law (Gordon Moore co-founder of Intel)
"Number of devices/chip doubles every 18 months"

Good. So what ...

He did not stated that the performance doubles every 18 months

Dennard Scaling

- Dennard observed that voltage and current should be proportional to the linear dimensions of a transistor
- Decrease feature size by a factor of $\boldsymbol{\lambda}$ and decrease voltage by a factor of λ; then \# transistors increase by λ^{2} and clock speed increases by $\boldsymbol{\lambda}$
- But the energy consumption does not change
- Unfortunately there is a catch: as feature size decreases, current leakage poses greater challenges, and causes the chip to heat up
- Challenge: powering the transistors without melting the chip

Dennard Scaling

Dennard Scaling

- 10,000,000,000
$\mid-\Gamma \quad 2,200,000,000$
broke

Single-core Era
Multicore Era

3.4 GHz

Frequency Scaling replaced by Scaling cores/chip

Moore's Law reinterpreted

- Number of cores per chip doubles every 2 years, while clock speed decreases (remains constant in the most optimistic scenarios)
- Number of threads of execution doubles every 2 years
- Need to deal with systems with millions of concurrent threads

Average Number of Cores Per Supercomputer

Top 500

19941996199820002002200420062008201020122014201620182020

Tflop/s
ASCI Red
Sandia NL

Pflop/s
RoadRunner Los AlamosNL

Eflop/s

Parallel computing models and their performances

A high level exploration of the HPC world

George Bosilca bosilca@icl.utk.edu

Overview

- Definition of parallel application
- Architectures taxonomy
- What is quantifiable ? Laws managing the parallel applications field
- Modeling performance of parallel applications

Formal definition of parallelism

The Bernstein Conditions Let's define:

- $\mathrm{I}(\mathrm{P})$ all variables, registers and memory locations used by P
- $\mathrm{O}(\mathrm{P})$ all variables, registers and memory locations written by P Then P1; P2 is equivalent to P1 \| P2 if and only if $\{\mathrm{I}(\mathrm{P} 1) \cap \mathrm{O}(\mathrm{P} 2)=\varnothing \& \mathrm{I}(\mathrm{P} 2) \cap \mathrm{O}(\mathrm{P} 1)=\varnothing \& \mathrm{O}(\mathrm{P} 1) \cap \mathrm{O}(\mathrm{P} 2)=\varnothing\}$
General case: $\mathrm{P} 1 \ldots$ Pn are parallel if and only if
each for each pair Pi, Pj we have $\mathrm{Pi} \| \mathrm{Pj}$.

3 limit to the parallel applications:

1. Data dependencies
2. Flow dependencies
3. Resources dependencies

Data dependencies

I1: $\mathrm{A}=\mathrm{B}+\mathrm{C}$
I2: $\quad \mathrm{E}=\mathrm{D}+\mathrm{A}$
I3: $A=F+G$

- Flow dependency (RAW): a variable assigned in a statement is used in a later statement
- Anti-dependency (WAR): a variable used in a statement is assigned in a subsequent statement
= Output dependency (WAW): a variable assigned in a statement is subsequently re-assigned

How to avoid them?
Which type of data dependency can be avoided?

Flow dependencies

I1: $\quad \mathrm{A}=\mathrm{B}+\mathrm{C}$
I2: $\quad \operatorname{if}(\mathrm{A})\{$
13: $\quad \mathrm{D}=\mathrm{E}+\mathrm{F}\}$
I4: $\quad \mathrm{G}=\mathrm{D}+\mathrm{H}$

- Data dependency
= Control dependency

How to avoid?

Resources dependencies

$$
\begin{array}{ll}
\text { I1: } & A=B+C \\
\text { I2: } & G=D+H
\end{array}
$$

How to avoid?

A more complicated example (loop)

$$
\begin{gathered}
\text { for } i=0 \text { to } 9 \\
A[i]=B[i]
\end{gathered}
$$

All statements are independent, as they relate to different data.
They are concurrent.

$$
\begin{aligned}
\text { for } \mathrm{i} & =1 \text { to } 9 \\
\mathrm{~A}[\mathrm{i}] & =\mathrm{A}[\mathrm{i}-1]
\end{aligned}
$$

$\mathrm{A}[1]=\mathrm{A}[0]$ All statements
$\mathrm{A}[2]=\mathrm{A}[1]$ are dependent,
$\mathrm{A}[3]=\mathrm{A}[2]$ as every 2
$\mathrm{A}[4]=\mathrm{A}[3]$ statements are
$A[5]=A[4]$ strictly
$A[6]=A[5]$ sequential.
$A[7]=A[6]$
$A[8]=A[7]$
$A[9]=A[8]$

A real example

$$
\begin{aligned}
& \text { for } \mathrm{i}=0 \text { to } \mathrm{N} \\
& \text { sum }+=\text { do_work(A[i]) }
\end{aligned}
$$

- Assuming we have p cores how do we parallelize this computation?
- What if N is really big?
- What if the duration of do_work is data dependent?

Flynn Taxonomy (1966)

- Computers classified by instruction delivery mechanism and data stream(s)
- I for instruction, P for program. Conceptually similar, technically at a different granularity.
- 4 characters code: 2 for instruction stream and 2 for data stream

	1 Instruction flow	>1 Instruction flow
1 data stream	SISD Von Neumann	MISD pipeline
>1 data stream	SIMD	MIMD

Flynn Taxonomy: Analogy

- SISD: assembly line work (no parallelism)
- SIMD: systolic, GPU computing (vector computing MMX, SSE, AVX)
- MISD: more unusual type. Safety requirements, replication capabilities, think space shuttle.
- MIMD: airport facility, several desks working at their own pace, synchronizing via a central entity (database). Most distributed algorithms, as well as multi-core applications.

Definitions

- Task vs Data parallelism
- Task parallelism: different tasks are carried out by different computational units on the same data
- Data parallelism: each computational unit is applying the same task on different data
- Concurrent computing: multiple independent tasks progress at any instant
- Parallel computing: multiple tasks cooperate closely to solve a problem
- Distributed Computing: multiple programs cooperate closely to solve a problem
- No agreement on parallel vs. distributed computing definitions

Amdahl Law

- First law of parallel applications (1967)
- Limit the speedup for all parallel applications
- Assume fixed problem size

Amdahl Law

Speedup is bound by $1 / \mathrm{a}$.

FIGURE 1. Speedup under Amdahl's Law

Amdahl Law

- Bad news for parallel applications
- 2 interesting facts:
- We should limit the sequential part
- A parallel computer should be a fast sequential computer to be able to resolve the sequential part quickly
- What about increasing the size of the initial problem?

Gustafson's Law

- Less constraints than the Amdahl law.
- In a parallel program the quantity of data to be processed increase, so the sequential part decrease.

$$
\left.\begin{array}{l}
t=s+P / n \\
P=a^{*} n
\end{array}\right\} \text { speedup }=\frac{s+a^{*} n}{s+a}, \begin{aligned}
& \\
& \\
& a \rightarrow \infty \Longrightarrow \text { speedup } \rightarrow n
\end{aligned}
$$

Gustafson's Law

- The limit of Amdahl Law can be transgressed if the quantity of data to be processed increase.

$$
\text { speedup } \leq n+(1-n) s
$$

Rule stating that if the size of most problems is scaled up sufficiently, then any required efficiency can be achieved on any number of processors.

Speedup

- Superlinear speedup?

Sometimes superlinear speedups can be observed!

- Memory/cache effects
- More processors typically also provide more memory/cache.
- Total computation time decreases due to more page/cache hits.
- Search anomalies
- Parallel search algorithms.
- Decomposition of search range and/or multiple search strategies.
- One task may be "lucky" to find result early.

Parallel execution models

- Amdahl and Gustafson laws define the limits without taking in account the properties of the computer architecture
- They can only loosely be used to predict (in fact mainly to cap) the real performance of any parallel application
- We should integrate in the same model the architecture of the computer and the architecture of the application

What are models good for?

- Abstracting the computer properties
- Making programming simple
- Making programs portable ?
- Reflecting essential properties
- Functionality
- Costs
- What is the von-Neumann model for parallel architectures?

Parallel Random Access Machine

- World described as a collection of synchronous processors which communicate with a global shared memory unit.
- A collection of numbered RAM processors $\left(P_{i}\right)$
- A collection of indexed memory cells (M[i])
- Each processor P_{i} has it's own unbounded local memory (registers) and knows it's index (rank)
- Each processor can access any shared memory cell in unit time
- Input and output of a PRAM algorithm consist in N distinct items
- A PRAM instruction consist in 3 synchronous steps: read (acquire the input data), computation, write (save the data back to a shared memory cell).

Shared memory

- Exchanging data is realized through the writing and reading of memory cells

Parallel Random Access Machine

- Algorithmic Complexity:
- Time $=$ the time elapsed for P_{0} computations
- Space $=$ the number of memory cells accessed
- Specialized in parallel algorithms
- Natural: the number of operations per cycle on N processors is at most N
- Strong: all accesses are realized in a single time unit
- Simple: keep the complexity and correctness overheads low y abstracting all communication or synchronization overheads

The PRAM corresponds intuitively to the programmers' view of a parallel computer: it ignores lower level architectural constraints, and details, such as memory access contention and overhead, synchronization overhead, interconnection network throughput, connectivity, speed limits and link bandwidths, etc.

Bulk Synchronous Parallel - BSP

Valiant 1990

- Differs from PRAM by taking in account communications and synchronizations and by distributing the memory across participants
- Compute: Components capable of computing or executing local memory transactions
- Communication: A network routing messages between components
- Synchronization: A support for synchronization on all or a sub-group of components

- Each processor can access his own memory without overhead and have a uniform slow access to remote memory

T T

BSP - Superstep

- Applications composed by Supersteps separated by global synchronizations.
- A superstep contains:
- A computation step
- A communication step
- A synchronization step

Synchronization used to insure that all processors complete the computation + communication steps in the same amount of time. As communications are remote memory accesses (one sided) there are no synchronizations during the computation + communication step

BSP - Global View

BSP - The communication step

- BSP consider communication not at the level of individual actions, but as a whole (per step)
- The goal being to define an upper bound on the time necessary to complete all data movements
- $h=$ the maximum number of messages (incoming or outgoing) per superstep
- g = the network capability to deliver messages
- It takes hg time for a processor to deliver h messages of size 1
- A message of size m takes the same time to send as m messages of size 1

BSP - The synchronization cost

- The cost of synchronization is noted by I and is generally determined empirically
- With the increase in scale of the computing resources, the synchronizations are becoming the main bottleneck
- Removing them might introduce deadlock or livelock
- Decrease the simplicity of the model

BSP - Compute the cost

$$
\begin{aligned}
T_{\text {superstep }} & =\max _{i=1}^{p}\left(w_{i}\right)+g * \max _{i=1}^{p}\left(h_{i}\right)+l \\
& =w+g * h+l
\end{aligned}
$$

Where:

$$
\begin{aligned}
& \text { w }=\text { max of computation time } \\
& g=1 /(\text { network bandwidth }) \\
& h=\text { max of number of messages } \\
& \text { I }=\text { time for the synchronization }
\end{aligned}
$$

$$
T_{\text {total }}=\sum_{s=1}^{S} T_{\text {superstep }}
$$

BSP

- An algorithm can be described using only w, h and the problem size.
- Collections of algorithms are available depending on the computer characteristics.
- Small L
- Small g
- The best algorithm can be selected depending on the computer properties.

BSP - example

- Numerical solution to Laplace' s equation

$$
U_{i, j}^{n+1}=\frac{1}{4}\left(U_{i-1, j}^{n}+U_{i+1}^{n}+U_{i, j-1}^{n}+U_{i, j+1}^{n}\right)
$$

for $\mathrm{j}=1$ to jmax
for $\mathrm{i}=1$ to imax
$\operatorname{Unew}(\mathrm{i}, \mathrm{j})=0.25$ * $(\mathrm{U}(\mathrm{i}-1, \mathrm{j})+\mathrm{U}(\mathrm{i}+1, \mathrm{j})$ $+U(i, j-1)+U(i, j+1))$
end for end for

BSP - example

- The approach to make it parallel is by partitioning the data

BSP - example

- The approach to make it parallel is by partitioning the data

Overlapping the data boundaries allow computation without communication for each superstep

On the communication step each processor update the corresponding columns on the remote processors.

BSP - example

$$
\begin{aligned}
& \text { for } \mathrm{j}=1 \text { to jmax } \\
& \text { for } \mathrm{i}=1 \text { to imax } \\
& \quad \text { unew }(\mathrm{i}, \mathrm{j})=0.25 *(\mathrm{U}(\mathrm{i}-1, \mathrm{j})+\mathrm{U}(\mathrm{i}+1, \mathrm{j}) \\
& \\
& \text { end for } \\
& \text { end for } \\
& \text { if me not } 0 \text { then } \\
& \text { bsp_put(to the left) } \\
& \text { endif } \\
& \text { if me not NPROCS }-1 \text { then } \\
& \text { bsp_put(to the right) } \\
& \text { Endif } \\
& \text { bsp_sync() }
\end{aligned}
$$

BSP - example

$$
T_{\text {superstep }}=w+g * h+l
$$

$h=$ max number of messages
$=\mathrm{N}$ values to the left +
N values to the right
$=2 * \mathrm{~N}$ (ignoring the inverse communication!)

$$
w=4 * N * N / p
$$

$$
T_{\text {superstep }}=4 * \frac{N^{2}}{p}+2 * g * N+l
$$

BSP - example

- BSP parameters for a wide variety of architectures has been published.

Machine	s	p	I	g
Origin 2000	101	4	1789	10.24
		32	39057	66.7
Cray T3E	46.7	4	357	1.77
		16	751	1.66
Pentium 10Mbit	61	4	139981	1128.5
		8	826054	2436.3
Pentium II	88	4	27583	39.6
100Mbit		8	38788	38.7

