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Simulation: The Third Pillar of Science

• Traditional scientific and engineering paradigm:
• Do theory or paper design.
• Perform experiments or build system.
• Reiterate

• Limitations:
• Too expensive – build a throw-away passenger jet
• Too difficult – build a large wind tunnel
• Too slow – wait for the outcome to become available (climate change)
• Too dangerous – weapons, drugs, medical treatement, climate experimentation

• Computational science
• Theory and models
• Together with efficient numerical models can cut development time and cost 

dramatically
• Requires a lot of computational power: High Performance Computers
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Why Turn to Simulation?
◆ When the problem is 

too . . .
Ø Complex
Ø Large / small
Ø Expensive
Ø Dangerous

◆ to do any other way.

Taurus_to_Taurus_60per_30deg.mpeg



Units of Measures
• High Performance Computing (HPC) units are:

• Flop: floating point operation, usually double precision unless noted - Flop/s: 
floating point operations per second

• Bytes: size of data (a double precision floating point number is 8) 

• Typical sizes are millions, billions, trillions... 

• Current fastest (public) machine ~ 125 Pflop/s
• Up-to-date list at www.top500.org 

Mega Mflop/s = 10^6 flop/s Mbyte = 2^20 = 1048576 ~ 10^6 bytes 

Giga Gflop/s = 10^9 flop/s Gbyte = 2^30 ~ 10^9 bytes 

Tera Tflop/s = 10^12 flop/s Tbyte = 2^40 ~ 10^12 bytes 

Peta Pflop/s = 10^15 flop/s Pbyte = 2^50 ~ 10^15 bytes 

Exa Eflop/s = 10^18 flop/s Ebyte = 2^60 ~ 10^18 bytes 

Zetta Zflop/s = 10^21 flop/s Zbyte = 2^70 ~ 10^21 bytes 

Yotta Yflop/s = 10^24 flop/s Ybyte = 2^80 ~ 10^24 bytes 



Smaller,
better,
harder
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Technology Trends: 
Microprocessor Capacity

2X transistors/Chip Every                         
1.5 years

Called “Moore’s Law”

Microprocessors have become smaller, 
denser, and more powerful.

Not just processors, bandwidth, 
storage, etc. 

2X memory and processor speed and 
½ size, cost, & power every 18 

months.

Gordon Moore (co-founder of 
Intel) Electronics Magazine, 1965

Number of devices/chip doubles 
every 18 months    

Moore’s Law (Gordon Moore co-founder of Intel)
”Number of devices/chip doubles every 18 
months”

Good. So what …

He did not stated that the 
performance doubles every 
18 months



Dennard Scaling

• Dennard observed that voltage and current should be 
proportional to the linear dimensions of a transistor

• Decrease feature size by a factor of 𝛌 and decrease 
voltage by a factor of 𝛌; then # transistors increase by 
𝛌2 and clock speed increases by 𝛌
• But the energy consumption does not change

• Unfortunately there is a catch: as feature size 
decreases, current leakage poses greater challenges, 
and causes the chip to heat up
• Challenge: powering the transistors without melting the chip
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Unfortunately Dennard Scaling is Over:
What is the Catch?
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Moore’s Law
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Breakdown is the result of small feature sizes, 
current leakage poses greater challenges,
and also causes the chip to heat up

Powering the transistors without melting the chip 

Breakdown: too hot to run
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Dennard Scaling Over
Evolution of processors

1971 2003

Single-core Era

2004

2013

Multicore Era

Dennard scaling
broke

740 KHz
3.4 GHz 3.5 GHz

The primary reason cited for the breakdown is that at small sizes, current 
leakage poses greater challenges, and also causes the chip to heat up, 
which creates a threat of thermal runaway and therefore further increases 
energy costs.

Data from Jack Dongarra



Frequency Scaling replaced by Scaling cores/chip
Performance Has Also Slowed, Along 
with Power
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Power is the root cause of all this

A hardware issue just became a 
software problem
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Data from Kunle Olukotun, Lance Hammond, Herb Sutter, Burton 
Smith, Chris Batten, and Krste Asanoviç

Slide from Kathy Yelick

Slide from Kathy Yelick



Moore’s Law reinterpreted

• Number of cores per 
chip doubles every 2 
years, while clock 
speed decreases 
(remains constant in 
the most optimistic 
scenarios)
• Number of threads of execution 

doubles every 2 years
• Need to deal with systems with 

millions of concurrent threads

Moore’s Law Reinterpreted

• Number of cores per chip 

doubles every 2 year, while 

clock speed decreases (not 

increases).

• Need to deal with systems with 

millions of concurrent threads

• Future generation will have 

billions of threads!

• Need to be able to easily replace 

inter-chip parallelism with intro-

chip parallelism

• Number of threads of 

execution doubles every 2 

year

Average Number of Cores Per 

Supercomputer



Top 500PERFORMANCE DEVELOPMENT
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Parallel computing 
models and their 

performances
A high level exploration of the 

HPC world

George Bosilca
bosilca@icl.utk.edu



Overview

• Definition of parallel application
• Architectures taxonomy
• What is quantifiable ? Laws managing the 

parallel applications field
• Modeling performance of parallel applications



Formal definition of parallelism
The Bernstein Conditions Let’s define:
• I(P) all variables, registers and memory locations used by P
• O(P) all variables, registers and memory locations written by P
Then P1; P2 is equivalent to P1 || P2 if and only if
{I(P1) Ç O(P2) = Æ & I(P2) Ç O(P1) = Æ & O(P1) Ç O(P2) = Æ}

General case: P1… Pn are parallel if and only if
each for each pair Pi, Pj we have Pi || Pj.

3 limit to the parallel applications:
1. Data dependencies
2. Flow dependencies
3. Resources dependencies

P1

I1

O1
P2

I2

O2



Data dependencies

I1:   A = B + C
I2:   E = D + A
I3:   A = F + G

Flow dependency (RAW): a variable assigned in a statement 
is used in a later statement
Anti-dependency (WAR): a variable used in a statement is 
assigned in a subsequent statement
Output dependency (WAW): a variable assigned in a statement 
is subsequently re-assigned

How to avoid them?
Which type of data dependency can be avoided ?

I1

I2

I3

I1

I2

I3

A

A

A



Flow dependencies

I1:     A = B + C
I2:     if( A ) {
I3:         D = E + F }
I4:     G = D + H

Control dependency

Data dependency

How to avoid ?

I1

I2

I3

I4



Resources dependencies

I1:     A = B + C
I2:     G = D + H

I1 I2

+

How to avoid ?



A more complicated example (loop)

for i = 1 to 9
A[i] = A[i-1]

All statements 
are independent, 
as they relate to 
different data. 
They are 
concurrent.

for i = 0 to 9
A[i] = B[i]

A[1] = A[0]
A[2] = A[1]
A[3] = A[2]
A[4] = A[3]
A[5] = A[4]
A[6] = A[5]
A[7] = A[6]
A[8] = A[7]
A[9] = A[8]

All statements 
are dependent, 
as every 2 
statements are 
strictly 
sequential.



A real example
for i = 0 to N
sum += do_work(A[i])

• Assuming we have p cores how do we parallelize 
this computation ?

• What if N is really big ?
• What if the duration of do_work is data 

dependent ?



Flynn Taxonomy (1966)

1 Instruction 
flow

> 1 Instruction 
flow

1 data 
stream

SISD
Von Neumann

MISD
pipeline

> 1 data 
stream

SIMD MIMD

• Computers classified by instruction delivery mechanism 
and data stream(s)

• I for instruction, P for program. Conceptually similar, technically at a different 
granularity.

• 4 characters code: 2 for instruction stream and 2 for data 
stream



Flynn Taxonomy: Analogy

• SISD: assembly line work (no parallelism)
• SIMD: systolic, GPU computing (vector 

computing MMX, SSE, AVX)
• MISD: more unusual type. Safety requirements, 

replication capabilities, think space shuttle.
• MIMD: airport facility, several desks working at 

their own pace, synchronizing via a central 
entity (database). Most distributed algorithms, 
as well as multi-core applications.



Definitions
• Task vs Data parallelism

• Task parallelism: different tasks are carried out by different computational units on 
the same data

• Data parallelism: each computational unit is applying the same task on different 
data

• Concurrent computing: multiple independent tasks 
progress at any instant

• Parallel computing: multiple tasks cooperate closely to 
solve a problem

• Distributed Computing: multiple programs cooperate 
closely to solve a problem

• No agreement on parallel vs. distributed computing 
definitions



Amdahl Law
• First law of parallel applications (1967)
• Limit the speedup for all parallel applications

• Assume fixed problem size
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Amdahl Law

Speedup is bound by 1/a.



Amdahl Law

• Bad news for parallel applications
• 2 interesting facts:

• We should limit the sequential part
• A parallel computer should be a fast sequential computer to be able to 

resolve the sequential part quickly

• What about increasing the size of the initial 
problem ?



Gustafson’s Law

• Less constraints than the Amdahl law.
• In a parallel program the quantity of data to 

be processed increase, so the sequential 
part decrease.

nPst /+=

naP *= as
nasspeedup

+

+
=

!
"
# *  

nspeedupa →⇒∞→



Gustafson’s Law

• The limit of Amdahl Law can be transgressed 
if the quantity of data to be processed 
increase.

snnspeedup )1( −+≤

Rule stating that if the size of most problems is
scaled up sufficiently, then any required
efficiency can be achieved on any number of
processors.



Speedup

• Superlinear speedup ?

Sub-linear

Superlinear

Sometimes superlinear speedups can be observed! 
• Memory/cache effects 
• More processors typically also provide more memory/cache. 
• Total computation time decreases due to more page/cache hits. 

• Search anomalies 
• Parallel search algorithms. 
• Decomposition of search range and/or multiple search strategies. 
• One task may be "lucky" to find result early. 



Parallel execution models

• Amdahl and Gustafson laws define the limits 
without taking in account the properties of the 
computer architecture

• They can only loosely be used to predict (in fact 
mainly to cap) the real performance of any 
parallel application

• We should integrate in the same model the 
architecture of the computer and the 
architecture of the application



What are models good for ?

• Abstracting the computer properties
• Making programming simple
• Making programs portable ?

• Reflecting essential properties
• Functionality
• Costs

• What is the von-Neumann model for parallel 
architectures ?



Parallel Random Access Machine
• World described as a collection of synchronous 

processors which communicate with a global 
shared memory unit.
• A collection of numbered RAM processors (Pi)
• A collection of indexed memory cells (M[i])
• Each processor Pi has it’s own unbounded local memory (registers) and knows 

it’s index (rank)
• Each processor can access any shared memory cell in unit time
• Input and output of a PRAM algorithm consist in

N distinct items
• A PRAM instruction consist in 3 synchronous steps:

read (acquire the input data), computation, write
(save the data back to a shared memory cell).

• Exchanging data is realized through the writing and reading of memory cells

Shared memory

P1 P2 P3 PN



Parallel Random Access Machine
• Algorithmic Complexity:

• Time = the time elapsed for P0 computations
• Space = the number of memory cells accessed

• Specialized in parallel algorithms
• Natural: the number of operations per cycle on N processors is at most N
• Strong: all accesses are realized in a single time unit
• Simple: keep the complexity and correctness overheads low y abstracting all 

communication or synchronization overheads

The PRAM corresponds intuitively to the programmers' view of 
a parallel computer: it ignores lower level architectural 
constraints, and details, such as memory access contention and 
overhead, synchronization overhead, interconnection network 
throughput, connectivity, speed limits and link bandwidths, etc.



Bulk Synchronous Parallel – BSP
• Differs from PRAM by taking in account 

communications and synchronizations and by 
distributing the memory across participants
• Compute: Components capable of computing or executing local memory transactions
• Communication: A network routing messages between components
• Synchronization: A support for synchronization on all or a sub-group of components

Valiant 1990

P/M P/M P/M P/M

• Each processor can access his own memory 
without overhead and have a uniform slow 
access to remote memory



BSP - Superstep

• Applications composed by Supersteps
separated by global synchronizations.

• A superstep contains:
• A computation step
• A communication step
• A synchronization step

Synchronization used to insure that all processors complete the 
computation + communication steps in the same amount of time.
As communications are remote memory accesses (one sided) there are 
no synchronizations during the computation + communication step



BSP – Global View
Tim

eline



BSP – The communication step
• BSP consider communication not at the level of 

individual actions, but as a whole (per step)
• The goal being to define an upper bound on the 

time necessary to complete all data movements
• h = the maximum number of messages 

(incoming or outgoing) per superstep
• g = the network capability to deliver messages

• It takes hg time for a processor to deliver h messages of size 1
• A message of size m takes the same time to send as m messages of size 1



BSP – The synchronization cost

• The cost of synchronization is noted by l and is 
generally determined empirically

• With the increase in scale of the computing 
resources, the synchronizations are becoming 
the main bottleneck
• Removing them might introduce deadlock or livelock
• Decrease the simplicity of the model



BSP – Compute the cost

Where:
w = max of computation time
g = 1/(network bandwidth)
h = max of number of messages
l = time for the synchronization



BSP

• An algorithm can be described using only w, h
and the problem size.

• Collections of algorithms are available 
depending on the computer characteristics.
• Small L
• Small g

• The best algorithm can be selected depending 
on the computer properties.



BSP - example

• Numerical solution to Laplace’s equation

( )n
ji

n
ji

n
i

n
ji

n
ji UUUUU 1,1,1,1
1

, 4
1

+−+−
+ +++=

i,j+1

i,j-1

i+1,ji-1,j

for j = 1 to jmax
for i = 1 to imax
Unew(i,j) = 0.25 * ( U(i-1,j) + U(i+1,j)

+   U(i,j-1) + U(i,j+1))
end for

end for



BSP - example

• The approach to make it parallel is by 
partitioning the data



BSP - example

• The approach to make it parallel is by 
partitioning the data

Overlapping the data boundaries 
allow computation without 
communication for each superstep

On the communication step each 
processor update the 
corresponding columns on the 
remote processors.



BSP - example

for j = 1 to jmax
for i = 1 to imax
unew(i,j) = 0.25 * ( U(i-1,j) + U(i+1,j)

+   U(i,j-1) + U(i,j+1))
end for

end for
if me not 0 then
bsp_put( to the left )

endif
if me not NPROCS – 1 then
bsp_put( to the right )

Endif
bsp_sync()



BSP - example

h = max number of messages
= N values to the left +

N values to the right
= 2 * N (ignoring the inverse communication!)

w = 4 * N * N / p



BSP - example

• BSP parameters for a wide variety of 
architectures has been published.

Machine s p l g

Origin 2000 101 4
32

1789
39057

10.24
66.7

Cray T3E 46.7 4
16

357
751

1.77
1.66

Pentium 10Mbit 61 4
8

139981
826054

1128.5
2436.3

Pentium II 
100Mbit

88 4
8

27583
38788

39.6
38.7


