
Why Parallel Computing?

George Bosilca
bosilca@icl.utk.edu

Simulation: The Third Pillar of Science

• Traditional scientific and engineering paradigm:
• Do theory or paper design.
• Perform experiments or build system.
• Reiterate

• Limitations:
• Too expensive – build a throw-away passenger jet
• Too difficult – build a large wind tunnel
• Too slow – wait for the outcome to become available (climate change)
• Too dangerous – weapons, drugs, medical treatement, climate experimentation

• Computational science
• Theory and models
• Together with efficient numerical models can cut development time and cost

dramatically
• Requires a lot of computational power: High Performance Computers

14

Why Turn to Simulation?
◆ When the problem is

too . . .
Ø Complex
Ø Large / small
Ø Expensive
Ø Dangerous

◆ to do any other way.

Taurus_to_Taurus_60per_30deg.mpeg

Units of Measures
• High Performance Computing (HPC) units are:

• Flop: floating point operation, usually double precision unless noted - Flop/s:
floating point operations per second

• Bytes: size of data (a double precision floating point number is 8)

• Typical sizes are millions, billions, trillions...

• Current fastest (public) machine ~ 125 Pflop/s
• Up-to-date list at www.top500.org

Mega Mflop/s = 10^6 flop/s Mbyte = 2^20 = 1048576 ~ 10^6 bytes

Giga Gflop/s = 10^9 flop/s Gbyte = 2^30 ~ 10^9 bytes

Tera Tflop/s = 10^12 flop/s Tbyte = 2^40 ~ 10^12 bytes

Peta Pflop/s = 10^15 flop/s Pbyte = 2^50 ~ 10^15 bytes

Exa Eflop/s = 10^18 flop/s Ebyte = 2^60 ~ 10^18 bytes

Zetta Zflop/s = 10^21 flop/s Zbyte = 2^70 ~ 10^21 bytes

Yotta Yflop/s = 10^24 flop/s Ybyte = 2^80 ~ 10^24 bytes

Smaller,
better,
harder

21

Technology Trends:
Microprocessor Capacity

2X transistors/Chip Every
1.5 years

Called “Moore’s Law”

Microprocessors have become smaller,
denser, and more powerful.

Not just processors, bandwidth,
storage, etc.

2X memory and processor speed and
½ size, cost, & power every 18

months.

Gordon Moore (co-founder of
Intel) Electronics Magazine, 1965

Number of devices/chip doubles
every 18 months

Moore’s Law (Gordon Moore co-founder of Intel)
”Number of devices/chip doubles every 18
months”

Good. So what …

He did not stated that the
performance doubles every
18 months

Dennard Scaling

• Dennard observed that voltage and current should be
proportional to the linear dimensions of a transistor

• Decrease feature size by a factor of 𝛌 and decrease
voltage by a factor of 𝛌; then # transistors increase by
𝛌2 and clock speed increases by 𝛌
• But the energy consumption does not change

• Unfortunately there is a catch: as feature size
decreases, current leakage poses greater challenges,
and causes the chip to heat up
• Challenge: powering the transistors without melting the chip

Dennard Scaling

• Dennard observed that voltage and current should be
proportional to the linear dimensions of a transistor

• Decrease feature size by a factor of 𝛌 and decrease
voltage by a factor of 𝛌; then # transistors increase by
𝛌2 and clock speed increases by 𝛌
• But the energy consumption does not change

• Unfortunately there is a catch: as feature size
decreases, current leakage poses greater challenges,
and causes the chip to heat up
• Challenge: powering the transistors without melting the chip

Unfortunately Dennard Scaling is Over:
What is the Catch?

2300

2,200,000,000

0.5

130

0
1

10
100

1,000
10,000

100,000
1,000,000

10,000,000
100,000,000

1,000,000,000
10,000,000,000

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Chip Transistor Count

Chip Power

23

Moore’s Law

W

W

Breakdown is the result of small feature sizes,
current leakage poses greater challenges,
and also causes the chip to heat up

Powering the transistors without melting the chip

Breakdown: too hot to run

Dennard Scaling

• Dennard observed that voltage and current should be
proportional to the linear dimensions of a transistor

• Decrease feature size by a factor of 𝛌 and decrease
voltage by a factor of 𝛌; then # transistors increase by
𝛌2 and clock speed increases by 𝛌
• But the energy consumption does not change

• Unfortunately there is a catch: as feature size
decreases, current leakage poses greater challenges,
and causes the chip to heat up
• Challenge: powering the transistors without melting the chip

Unfortunately Dennard Scaling is Over:
What is the Catch?

2300

2,200,000,000

0.5

130

0
1

10
100

1,000
10,000

100,000
1,000,000

10,000,000
100,000,000

1,000,000,000
10,000,000,000

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Chip Transistor Count

Chip Power

23

Moore’s Law

W

W

Breakdown is the result of small feature sizes,
current leakage poses greater challenges,
and also causes the chip to heat up

Powering the transistors without melting the chip

Breakdown: too hot to run

Dennard Scaling Over
Evolution of processors

1971 2003

Single-core Era

2004

2013

Multicore Era

Dennard scaling
broke

740 KHz
3.4 GHz 3.5 GHz

The primary reason cited for the breakdown is that at small sizes, current
leakage poses greater challenges, and also causes the chip to heat up,
which creates a threat of thermal runaway and therefore further increases
energy costs.

Data from Jack Dongarra

Frequency Scaling replaced by Scaling cores/chip
Performance Has Also Slowed, Along
with Power

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (in Thousands)

Frequency (MHz)

Power (W)

Cores

Power is the root cause of all this

A hardware issue just became a
software problem

29

Data from Kunle Olukotun, Lance Hammond, Herb Sutter, Burton
Smith, Chris Batten, and Krste Asanoviç

Slide from Kathy Yelick

Slide from Kathy Yelick

Moore’s Law reinterpreted

• Number of cores per
chip doubles every 2
years, while clock
speed decreases
(remains constant in
the most optimistic
scenarios)
• Number of threads of execution

doubles every 2 years
• Need to deal with systems with

millions of concurrent threads

Moore’s Law Reinterpreted

• Number of cores per chip

doubles every 2 year, while

clock speed decreases (not

increases).

• Need to deal with systems with

millions of concurrent threads

• Future generation will have

billions of threads!

• Need to be able to easily replace

inter-chip parallelism with intro-

chip parallelism

• Number of threads of

execution doubles every 2

year

Average Number of Cores Per

Supercomputer

Top 500PERFORMANCE DEVELOPMENT

1

10

100

1000

10000

100000

1000000

10000000

100000000
1E+09

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

SUM

N=1

N=100

1 Gflop/s

1 Tflop/s

100 Gflop/s

100 Tflop/s

10 Gflop/s

10 Tflop/s

1 Pflop/s

100 Pflop/s

10 Pflop/s

1 Eflop/s

N=10

Tflops
Achieved
ASCI Red
Sandia NL

Pflops
Achieved

RoadRunner
Los Alamos NL

Eflops
Achieved?

79

Tflop/s
ASCI Red
Sandia NL

Pflop/s
RoadRunner
Los AlamosNL

Eflop/s
TBD

Parallel computing
models and their

performances
A high level exploration of the

HPC world

George Bosilca
bosilca@icl.utk.edu

Overview

• Definition of parallel application
• Architectures taxonomy
• What is quantifiable ? Laws managing the

parallel applications field
• Modeling performance of parallel applications

Formal definition of parallelism
The Bernstein Conditions Let’s define:
• I(P) all variables, registers and memory locations used by P
• O(P) all variables, registers and memory locations written by P
Then P1; P2 is equivalent to P1 || P2 if and only if
{I(P1) Ç O(P2) = Æ & I(P2) Ç O(P1) = Æ & O(P1) Ç O(P2) = Æ}

General case: P1… Pn are parallel if and only if
each for each pair Pi, Pj we have Pi || Pj.

3 limit to the parallel applications:
1. Data dependencies
2. Flow dependencies
3. Resources dependencies

P1

I1

O1
P2

I2

O2

Data dependencies

I1: A = B + C
I2: E = D + A
I3: A = F + G

Flow dependency (RAW): a variable assigned in a statement
is used in a later statement
Anti-dependency (WAR): a variable used in a statement is
assigned in a subsequent statement
Output dependency (WAW): a variable assigned in a statement
is subsequently re-assigned

How to avoid them?
Which type of data dependency can be avoided ?

I1

I2

I3

I1

I2

I3

A

A

A

Flow dependencies

I1: A = B + C
I2: if(A) {
I3: D = E + F }
I4: G = D + H

Control dependency

Data dependency

How to avoid ?

I1

I2

I3

I4

Resources dependencies

I1: A = B + C
I2: G = D + H

I1 I2

+

How to avoid ?

A more complicated example (loop)

for i = 1 to 9
A[i] = A[i-1]

All statements
are independent,
as they relate to
different data.
They are
concurrent.

for i = 0 to 9
A[i] = B[i]

A[1] = A[0]
A[2] = A[1]
A[3] = A[2]
A[4] = A[3]
A[5] = A[4]
A[6] = A[5]
A[7] = A[6]
A[8] = A[7]
A[9] = A[8]

All statements
are dependent,
as every 2
statements are
strictly
sequential.

A real example
for i = 0 to N
sum += do_work(A[i])

• Assuming we have p cores how do we parallelize
this computation ?

• What if N is really big ?
• What if the duration of do_work is data

dependent ?

Flynn Taxonomy (1966)

1 Instruction
flow

> 1 Instruction
flow

1 data
stream

SISD
Von Neumann

MISD
pipeline

> 1 data
stream

SIMD MIMD

• Computers classified by instruction delivery mechanism
and data stream(s)

• I for instruction, P for program. Conceptually similar, technically at a different
granularity.

• 4 characters code: 2 for instruction stream and 2 for data
stream

Flynn Taxonomy: Analogy

• SISD: assembly line work (no parallelism)
• SIMD: systolic, GPU computing (vector

computing MMX, SSE, AVX)
• MISD: more unusual type. Safety requirements,

replication capabilities, think space shuttle.
• MIMD: airport facility, several desks working at

their own pace, synchronizing via a central
entity (database). Most distributed algorithms,
as well as multi-core applications.

Definitions
• Task vs Data parallelism

• Task parallelism: different tasks are carried out by different computational units on
the same data

• Data parallelism: each computational unit is applying the same task on different
data

• Concurrent computing: multiple independent tasks
progress at any instant

• Parallel computing: multiple tasks cooperate closely to
solve a problem

• Distributed Computing: multiple programs cooperate
closely to solve a problem

• No agreement on parallel vs. distributed computing
definitions

Amdahl Law
• First law of parallel applications (1967)
• Limit the speedup for all parallel applications

• Assume fixed problem size

()
N

aa
speedup

N
ps

psspeedup

−+
=

+

+
=

1
1

N = number of
processors

s

p

s
p p p p p

Amdahl Law

Speedup is bound by 1/a.

Amdahl Law

• Bad news for parallel applications
• 2 interesting facts:

• We should limit the sequential part
• A parallel computer should be a fast sequential computer to be able to

resolve the sequential part quickly

• What about increasing the size of the initial
problem ?

Gustafson’s Law

• Less constraints than the Amdahl law.
• In a parallel program the quantity of data to

be processed increase, so the sequential
part decrease.

nPst /+=

naP *= as
nasspeedup

+

+
=

!
"
*

nspeedupa →⇒∞→

Gustafson’s Law

• The limit of Amdahl Law can be transgressed
if the quantity of data to be processed
increase.

snnspeedup)1(−+≤

Rule stating that if the size of most problems is
scaled up sufficiently, then any required
efficiency can be achieved on any number of
processors.

Speedup

• Superlinear speedup ?

Sub-linear

Superlinear

Sometimes superlinear speedups can be observed!
• Memory/cache effects
• More processors typically also provide more memory/cache.
• Total computation time decreases due to more page/cache hits.

• Search anomalies
• Parallel search algorithms.
• Decomposition of search range and/or multiple search strategies.
• One task may be "lucky" to find result early.

Parallel execution models

• Amdahl and Gustafson laws define the limits
without taking in account the properties of the
computer architecture

• They can only loosely be used to predict (in fact
mainly to cap) the real performance of any
parallel application

• We should integrate in the same model the
architecture of the computer and the
architecture of the application

What are models good for ?

• Abstracting the computer properties
• Making programming simple
• Making programs portable ?

• Reflecting essential properties
• Functionality
• Costs

• What is the von-Neumann model for parallel
architectures ?

Parallel Random Access Machine
• World described as a collection of synchronous

processors which communicate with a global
shared memory unit.
• A collection of numbered RAM processors (Pi)
• A collection of indexed memory cells (M[i])
• Each processor Pi has it’s own unbounded local memory (registers) and knows

it’s index (rank)
• Each processor can access any shared memory cell in unit time
• Input and output of a PRAM algorithm consist in

N distinct items
• A PRAM instruction consist in 3 synchronous steps:

read (acquire the input data), computation, write
(save the data back to a shared memory cell).

• Exchanging data is realized through the writing and reading of memory cells

Shared memory

P1 P2 P3 PN

Parallel Random Access Machine
• Algorithmic Complexity:

• Time = the time elapsed for P0 computations
• Space = the number of memory cells accessed

• Specialized in parallel algorithms
• Natural: the number of operations per cycle on N processors is at most N
• Strong: all accesses are realized in a single time unit
• Simple: keep the complexity and correctness overheads low y abstracting all

communication or synchronization overheads

The PRAM corresponds intuitively to the programmers' view of
a parallel computer: it ignores lower level architectural
constraints, and details, such as memory access contention and
overhead, synchronization overhead, interconnection network
throughput, connectivity, speed limits and link bandwidths, etc.

Bulk Synchronous Parallel – BSP
• Differs from PRAM by taking in account

communications and synchronizations and by
distributing the memory across participants
• Compute: Components capable of computing or executing local memory transactions
• Communication: A network routing messages between components
• Synchronization: A support for synchronization on all or a sub-group of components

Valiant 1990

P/M P/M P/M P/M

• Each processor can access his own memory
without overhead and have a uniform slow
access to remote memory

BSP - Superstep

• Applications composed by Supersteps
separated by global synchronizations.

• A superstep contains:
• A computation step
• A communication step
• A synchronization step

Synchronization used to insure that all processors complete the
computation + communication steps in the same amount of time.
As communications are remote memory accesses (one sided) there are
no synchronizations during the computation + communication step

BSP – Global View
Tim

eline

BSP – The communication step
• BSP consider communication not at the level of

individual actions, but as a whole (per step)
• The goal being to define an upper bound on the

time necessary to complete all data movements
• h = the maximum number of messages

(incoming or outgoing) per superstep
• g = the network capability to deliver messages

• It takes hg time for a processor to deliver h messages of size 1
• A message of size m takes the same time to send as m messages of size 1

BSP – The synchronization cost

• The cost of synchronization is noted by l and is
generally determined empirically

• With the increase in scale of the computing
resources, the synchronizations are becoming
the main bottleneck
• Removing them might introduce deadlock or livelock
• Decrease the simplicity of the model

BSP – Compute the cost

Where:
w = max of computation time
g = 1/(network bandwidth)
h = max of number of messages
l = time for the synchronization

BSP

• An algorithm can be described using only w, h
and the problem size.

• Collections of algorithms are available
depending on the computer characteristics.
• Small L
• Small g

• The best algorithm can be selected depending
on the computer properties.

BSP - example

• Numerical solution to Laplace’s equation

()n
ji

n
ji

n
i

n
ji

n
ji UUUUU 1,1,1,1
1

, 4
1

+−+−
+ +++=

i,j+1

i,j-1

i+1,ji-1,j

for j = 1 to jmax
for i = 1 to imax
Unew(i,j) = 0.25 * (U(i-1,j) + U(i+1,j)

+ U(i,j-1) + U(i,j+1))
end for

end for

BSP - example

• The approach to make it parallel is by
partitioning the data

BSP - example

• The approach to make it parallel is by
partitioning the data

Overlapping the data boundaries
allow computation without
communication for each superstep

On the communication step each
processor update the
corresponding columns on the
remote processors.

BSP - example

for j = 1 to jmax
for i = 1 to imax
unew(i,j) = 0.25 * (U(i-1,j) + U(i+1,j)

+ U(i,j-1) + U(i,j+1))
end for

end for
if me not 0 then
bsp_put(to the left)

endif
if me not NPROCS – 1 then
bsp_put(to the right)

Endif
bsp_sync()

BSP - example

h = max number of messages
= N values to the left +

N values to the right
= 2 * N (ignoring the inverse communication!)

w = 4 * N * N / p

BSP - example

• BSP parameters for a wide variety of
architectures has been published.

Machine s p l g

Origin 2000 101 4
32

1789
39057

10.24
66.7

Cray T3E 46.7 4
16

357
751

1.77
1.66

Pentium 10Mbit 61 4
8

139981
826054

1128.5
2436.3

Pentium II
100Mbit

88 4
8

27583
38788

39.6
38.7

