Steve Abbott <

Expressive Parallelism

AGENDA Pipelining

Routines

The loop Directive

The directive gives the compiler additional information about the next loop in
the source code through several clauses.

- all iterations of the loop are independent
- turn the next N loops into one, flattened loop

- break the next 1 or more loops into tiles based on the
provided dimensions.

3 NVIDIA.

OpenACC: 3 Levels of Parallelism

-

"

Gang

| <—1—Vector ——> ST

~

J

-

"

E==@=== Workers
EEEEEENE
Gang)

« Vector threads work in
lockstep (SIMD/SIMT
parallelism)

- Workers compute a vector

* Gangs have 1 or more
workers and share resources
(such as cache, the
streaming multiprocessor,
etc.)

* Multiple gangs work
independently of each other

4 <ANVIDIA.

Execution Model

Software Hardware
[] Threads are executed by scalar processors
Scalar
Thread Processor
Thread blocks are executed on multiprocessors
-
22222222 | Thread blocks do not migrate
1
—
Several concurrent thread blocks can reside on one
Thread

Block Multiprocessor multiprocessor - limited by multiprocessor

A kernel is launched as a grid of thread blocks

Grid Device

gang, worker, vector Clauses

gang, worker, and vector can be added to a loop clause

A parallel region can only specify one of each gang, worker, vector

Control the size using the following clauses on the parallel region

num_gangs(n), num_workers(n), vector_length(n)

#pragma acc parallel loop gang
for (int i = 0; 1 < n; ++1i)
#pragma acc loop vector

for (int j = 0; j < n; ++j)

#pragma acc parallel vector length(32)
#pragma acc loop gang worker
for (int i = 0; 1 < n; ++i)

#pragma acc loop vector

for (int j = 0; j < n; ++j)

6 <NVIDIA.

gang, worker, vector Clauses

gang, worker, and vector can be added to a kernels loop clause too

Since different loops in a kernels region may be parallelized differently, fine-tuning is
done as a parameter to the gang, worker, and vector clauses.

#pragma acc kernels loop gang #pragma acc kernels loop gang worker
for (int i = 0; 1 < n; ++1i) for (int i = 0; 1 < n; ++1i)
#pragma acc loop vector #pragma acc loop vector (32)

for (int j = 0; j < n; ++j) for (int j = 0; j < n; ++j)

7 <NVIDIA.

The collapse Clause

Takes the next n tightly-nested loops, folds them into
one, and applies the OpenACC directives to the new loop.

#pragma acc parallel loop \
collapse(2) for (int ij=0; 1ij<N*M; 1ij++)

for(int 1=0; i<N; 1i++)
for (int j=0; j<M; J++)

Why?
Collapse outer loops to enable creating more gangs.
Collapse inner loops to enable longer vector lengths.
Collapse all loops, when possible, to do both.

8 NVIDIA.

The tile clause

Operate on smaller blocks of the operation to exploit data locality

#pragma acc loop tile(4,4)

for(i = 1; i <= ROWS; i++) {

¥

for(j = 1; j <= COLUMNS;
Temp[i][j] = ©.25 *
(1+1][]]

(1-1][7.
i][j+1

¥

(Temp last]
Temp last]
Temp last]
Temp last]

1][J-1]

+
+
+

1);

J++) A

Stride-1 Memory Accesses

for(i=0; i<N; i++)
for(j=0; j<M; j++)
{
A[1][]J][1]
A[1][]][2]
}
}

i
O K
AV QY
- -h
e wo

The fastest dimension is length 2 and
fastest loop strides by 2.

for(i=0; i<N; i++)
for(j=0; j<M; j++)
{
A[1][1][3] = 1.0f;
A[2][1][J] = @.ef;
}
}

Now the inner loop is the fastest
dimension through memory.

10 NVIDIA.

Stride-1 Memory Accesses

for(i=0; i<N; i++)
for(j=0; j<M; Jj++)
{
A[i][j].a = 1.0f;
A[i][j].b = @.0f;
}
}

If all threads access the “a”
element, they will be accesses
every-other memory element.

for(1i=0; i<N; i++)
for(j=0; j<M; j++)
{
Aa[i][]j] = 1.0f;
Ab[i][j] = ©.0f;
}
}

Now all threads are access
contiguous elements of Aa and Ab.

11 NVIDIA.

Optimize Loop Performance

#fpragma acc data copy(A) create (Anew)
while (err > tol && iter < iter max) {
err=0.0;

#pragma acc parallel loop device type(nvidia) tile (32 ,4)
for(int j = 1; j < n-1; j++) { { “Tile” the next two loops
for(int i = 1; i < m-1; i++) { into 32x4 blocks, but

only on NVIDIA GPUs.

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
A[3-1][i] + A[3+1][i]);

err = max(err, abs(Anew[j][i] - A[j]l[i]))~
}
}
#pragma acc parallel loop device type(nvidia) tile(32,4)
for(int j =1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {
A[3]1[i] = Anew[j][i];

40.00X

35.00X

30.00X

25.00X

20.00X

15.00X

10.00X

5.00X

0.00X

Compiler: PGl 16.10

Speed-Up (Higher is Better)

36.78X
34.71X

Intel Xeon E5-2698 v3 @ 2.30GHz (Haswell)

VS.

NVIDIA Tesla K40 & Tesla P100

14.92X 15.46X
4.59X 5.00X
3.69X
1.94X .

1.00X
— [
Single 2 Threads 4 Threads 6 Threads 8 Threads OpenACC OpenACC OpenACC OpenACC

Thread (K40) Tuned (K40 P100

Tuned (P100)

Asynchronous Programming

Real World Examples:
Cooking a Meal: Boiling potatoes while preparing other parts of the dish.

Three students working on a project on George Washington, one researches his
early life, another his military career, and the third his presidency.

Automobile assembly line: each station adds a different part to the car until it is
finally assembled.

14 NVIDIA.

Asynchronous OpenACC

So far, all OpenACC directives have been synchronous with the host
Host waits for the parallel loop to complete

Host waits for data updates to complete

Most OpenACC directives can be made asynchronous
Host issues multiple parallel loops to the device before waiting
Host performs part of the calculation while the device is busy

Data transfers can happen before the data is needed

15

NVIDIA.

GPU Timeline Blocked Updates

-
‘, MNVIDIA Visual Profiler @jlarkin-dt

Elle Wiew Window Bun Help

=

NEEEL S - [RaAAIFRIE2ETA-
[& % *NewSessionl 2 i
(G | 0.184 s 0.185 s 65 0.187 5 0.188 5
Fu =l Process "acc california-175... I Com pute and
[Ea = Thread 2899274752
| s Updates h '
= o | I8N SESEE NESEE B (RESE RESEE §EoE e pdates happen 1n
- Runtime API
- Drvr AP W Leusi | R Jeusi | B cosin | R Lcosir| B cusi| B custe B Leus R | coste | blocks.
- Profiling Overhead
[= [0] Tesla K20c
[=| Context 1 (CUDA)
= ¥ MemCpy (HtoD) | B]]]]]]]
= ¥ MemCpy (DtoH) [| | [| [| [| [| [| |
.
The last step is to
L 5F 41.8% blurs_pipe...
3 2008 s . overlap compute
¥ 201% burs_upe..
L5 17.9% blurs_34_g... d py
[=| streams an CO *
- Defaut | N ErEEE NETSEE NETSME NEMSME NETSEE ECNSME NOTSEE B AN
- Stream 13 =

Pipelining Data Transfers

Two Independent Operations Serialized

Overlapping Copying and Computation

17 <ANVIDIA.

OpenACC async and wait

launches work asynchronously in queue
blocks host until all operations in queue 1 have completed
Work queues operate in-order, serving as a way to express dependencies.

Work queues of different numbers may (or may not) run concurrently.

#pragma acc parallel loop If nis not specified,
. async will go into a
#pragma acc parallel loop default queue and

for (int i=0; i<N; i++) wait will wait all

previously queued
for (int i=0; i<N; i++) work.

18 NVIDIA.

Pipelined Code

#pragma acc data create(imgData[w*h*ch],out[w*h*ch])

copyin(filter)
{ Cycle between 3 async
for (long blocky = @; blocky < nblocks; blocky++)
(queues by blocks.
long starty = MAX(@,blocky * blocksize - filtersize/2);

long endy MIN(h,starty + blocksize + filtersize/2);
#pragma acc update device(imgData[starty*step:(endy-starty)*step]) async(block%3+1)
starty = blocky * blocksize;
endy = starty + blocksize;
#pragma acc parallel loop collapse(2) gang vector async(block%3+1)
for (y=starty; y<endy; y++) for (x=0; x<w; x++) {
<filter code ommitted>
out[y * step + x * ch]
out[y * step + x * ch + 1]

255 - (scale * blue);
255 - (scale * green);

out[y * step + x * ch + 2]

} :
#pragma acc update self(out[starty*step:blocksize*step]) async(block%3+1) Wait for all blocks to

} — complete.

#pragma acc wait

}

255 - (scale * red);

GPU Timeline Pipelined

-
‘ MNVIDIA Visual Profiler @jlarkin-dt

o= g
File Wiew Window PBun Help
NHEWESS - @@l F RIEEE1A-
f j © *MewSessionl £ = /8 =
(W | 189 ms 189.5 ms 5 190.5 ms 191 ms
B4 [= Process "acc california-175. .. [}
BEH [= Thread 2899274752 We re n OW a b le to
= I-I _-l acc_wait@invert.c:218 acc_wait@i...
openiee | N0 |
e overlap compute
| Drier AP T T T cuStreamSynchronize cLStreams...
= Profiling Overhead a n d CO pyo
=l [0] Tesla k20c
[=| Context 1 (CUDA)
- MemCpy (HtoD) EEE N H = Hm =
. 7 MemCpy (DtoH) - - - - - - - -
Hc : blurs_pipelin... blurs_pipelin... urs_pipelin... urs_pipelin...
Sl blurs_pipelin... blurs_pipelin... Blurs_pipelin... blurs_pipelin...
|
L 41.9% blurs,_pipe... blurs_pipelin - blurs_pipelin - blurs_pipelin - blurs_pipelin -
\ - 5F 20.1% blurs_bloc...
I L5 20.1% blurs_upd. ..
Ll L 17.9% blurs_34 qg...
I [=| Streams L
- Default
- stream 13 | [blurs pipelin |~ || 1] [blurs pipelin.. || -
[« 1 0
b

OpenACC Routine Directive

Specifies that the compiler should generate a device copy of the function/subroutine
and what type of parallelism the routine contains.
Clauses:

gang/worker/vector/seq
Specifies the level of parallelism contained in the routine.

bind
Specifies an optional name for the routine, also supplied at call-site

no host

The routine will only be used on the device You must declare one
_ level of parallelism on

device type the routine directive.

Specialize this routine for a particular device type.

21 <4 NVIDIA.

Routine Directive: C/C++

// foo.h
#pragma acc routine seq
double foo(int 1i):

// Used in main ()

#pragma acc parallel loop

for(int i=0;i<N;i++) {
array[i] = foo(1i);

}

At function source:

Function needs to be built for the
Gru.

It will be called by each thread
(sequentially)

At call the compiler needs to know:
Function will be available on the GPU

It is a sequential routine

22 NVIDIA.

OPENACC Resources

Guides o Talks e Tutorials e Videos e Books e Spec e Code Samples e Teaching Materials e Events e Success Stories e Courses e Slack e Stack Overflow

FREE
Compilers

PGl

Community
EDITION

¥ slack

https://www.openacc.org/community#slack

Resources
https://www.openacc.org/resources
OpenACC

Resources

R Guides & Books

Introduction to OpenACC Quick Guides. Paraliel Programming with OpenACC

* OpenAcC

Tutorials
a8 Programming Massively Paraliel Procassors, Third
h

Edition: A Hands-on

Compilers and Tools
https://www.openacc.org/tools

OpenACC

Downloads & Tools

OpenAce compllers, profil and

Commercial Compilers Open Source Compilers

‘..__~=3.A:(PG I él]ﬂﬂmﬂimﬁumu @

Contact Cray

OpenACC Directives

Success Stories
https://www.openacc.org/success-stories

OpenACC

Success Stories

2re STAing thesr resuls 300 experences.

Events

> Watch more OpenACC Videos on YouTube

https://www.openacc.org/events

OpenACC

Events

The OpenACC ¢ y orgas

around the world

23 <ANVIDIA.

https://www.openacc.org/resources
https://www.openacc.org/success-stories
https://www.openacc.org/events
https://gcc.gnu.org/wiki/OpenACC
https://www.openacc.org/tools
https://www.pgroup.com/products/community.htm
https://www.openacc.org/community#slack

