
Steve Abbott <sabbott@nvidia.com>, November 17, 2017

Advanced OpenACC

2

AGENDA

Expressive Parallelism

Pipelining

Routines

3

The loop Directive

The loop directive gives the compiler additional information about the next loop in
the source code through several clauses.

• independent – all iterations of the loop are independent

• collapse(N) – turn the next N loops into one, flattened loop

• tile(N[,M,…]) - break the next 1 or more loops into tiles based on the
provided dimensions.

4

OpenACC: 3 Levels of Parallelism

• Vector threads work in

lockstep (SIMD/SIMT

parallelism)

• Workers compute a vector

• Gangs have 1 or more

workers and share resources

(such as cache, the

streaming multiprocessor,

etc.)

• Multiple gangs work

independently of each other

Workers

Gang

Workers

Gang

Vector

Vector

5

Software Hardware

Threads are executed by scalar processors

Thread

Scalar

Processor

Thread

Block Multiprocessor

Thread blocks are executed on multiprocessors

Thread blocks do not migrate

Several concurrent thread blocks can reside on one

multiprocessor - limited by multiprocessor

resources (shared memory and register file)

...

Grid Device

A kernel is launched as a grid of thread blocks

Execution Model

6

gang, worker, vector Clauses

gang, worker, and vector can be added to a loop clause

A parallel region can only specify one of each gang, worker, vector

Control the size using the following clauses on the parallel region

num_gangs(n), num_workers(n), vector_length(n)

#pragma acc parallel loop gang

for (int i = 0; i < n; ++i)

#pragma acc loop vector

for (int j = 0; j < n; ++j)

...

#pragma acc parallel vector_length(32)

#pragma acc loop gang worker

for (int i = 0; i < n; ++i)

#pragma acc loop vector

for (int j = 0; j < n; ++j)

...

7

gang, worker, vector Clauses

gang, worker, and vector can be added to a kernels loop clause too

Since different loops in a kernels region may be parallelized differently, fine-tuning is
done as a parameter to the gang, worker, and vector clauses.

#pragma acc kernels loop gang

for (int i = 0; i < n; ++i)

#pragma acc loop vector

for (int j = 0; j < n; ++j)

...

#pragma acc kernels loop gang worker

for (int i = 0; i < n; ++i)

#pragma acc loop vector(32)

for (int j = 0; j < n; ++j)

...

8

The collapse Clause

collapse(n): Takes the next n tightly-nested loops, folds them into
one, and applies the OpenACC directives to the new loop.

Why?

• Collapse outer loops to enable creating more gangs.

• Collapse inner loops to enable longer vector lengths.

• Collapse all loops, when possible, to do both.

#pragma acc parallel loop \

collapse(2)

for(int i=0; i<N; i++)

for(int j=0; j<M; j++)

...

#pragma acc parallel loop

for(int ij=0; ij<N*M; ij++)

...

9

The tile clause

#pragma acc loop tile(4,4)
for(i = 1; i <= ROWS; i++) {

for(j = 1; j <= COLUMNS; j++) {
Temp[i][j] = 0.25 *
(Temp_last[i+1][j] +
Temp_last[i-1][j] +
Temp_last[i][j+1] +
Temp_last[i][j-1]);

}
}

Operate on smaller blocks of the operation to exploit data locality

10

Stride-1 Memory Accesses

for(i=0; i<N; i++)
for(j=0; j<M; j++)
{

A[i][j][1] = 1.0f;
A[i][j][2] = 0.0f;

}
}

The fastest dimension is length 2 and

fastest loop strides by 2.

for(i=0; i<N; i++)
for(j=0; j<M; j++)
{

A[1][i][j] = 1.0f;
A[2][i][j] = 0.0f;

}
}

Now the inner loop is the fastest
dimension through memory.

11

Stride-1 Memory Accesses

for(i=0; i<N; i++)
for(j=0; j<M; j++)
{

A[i][j].a = 1.0f;
A[i][j].b = 0.0f;

}
}

If all threads access the “a”

element, they will be accesses

every-other memory element.

for(i=0; i<N; i++)
for(j=0; j<M; j++)
{

Aa[i][j] = 1.0f;
Ab[i][j] = 0.0f;

}
}

Now all threads are access
contiguous elements of Aa and Ab.

12

Optimize Loop Performance
#pragma acc data copy(A) create(Anew)

while (err > tol && iter < iter_max) {

err=0.0;

#pragma acc parallel loop device_type(nvidia) tile(32,4)

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

#pragma acc parallel loop device_type(nvidia) tile(32,4)

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

A[j][i] = Anew[j][i];

}

}

}

iter++;

}

“Tile” the next two loops

into 32x4 blocks, but

only on NVIDIA GPUs.

13

1.00X
1.94X

3.69X
4.59X 5.00X

14.92X
15.46X

34.71X

36.78X

0.00X

5.00X

10.00X

15.00X

20.00X

25.00X

30.00X

35.00X

40.00X

Single
Thread

2 Threads 4 Threads 6 Threads 8 Threads OpenACC
(K40)

OpenACC
Tuned (K40

OpenACC
P100

OpenACC
Tuned (P100)

Speed-Up (Higher is Better)

Intel Xeon E5-2698 v3 @ 2.30GHz (Haswell)

vs.

NVIDIA Tesla K40 & Tesla P100

Compiler: PGI 16.10

14

Asynchronous Programming

Real World Examples:

• Cooking a Meal: Boiling potatoes while preparing other parts of the dish.

• Three students working on a project on George Washington, one researches his
early life, another his military career, and the third his presidency.

• Automobile assembly line: each station adds a different part to the car until it is
finally assembled.

Programming multiple operations without immediate synchronization

15

Asynchronous OpenACC

So far, all OpenACC directives have been synchronous with the host

• Host waits for the parallel loop to complete

• Host waits for data updates to complete

Most OpenACC directives can be made asynchronous

• Host issues multiple parallel loops to the device before waiting

• Host performs part of the calculation while the device is busy

• Data transfers can happen before the data is needed

16

GPU Timeline Blocked Updates

Compute and

Updates happen in

blocks.

The last step is to

overlap compute

and copy.

17

Pipelining Data Transfers

H2D kernel D2H H2D kernel D2H

H2D kernel D2H

H2D kernel D2H

Two Independent Operations Serialized

Overlapping Copying and Computation

NOTE: In real

applications,

your boxes will

not be so evenly

sized.

H2D kernel D2H

18

OpenACC async and wait
async(n): launches work asynchronously in queue n

wait(n): blocks host until all operations in queue n have completed

Work queues operate in-order, serving as a way to express dependencies.

Work queues of different numbers may (or may not) run concurrently.

#pragma acc parallel loop async(1)

...

#pragma acc parallel loop async(1)

for(int i=0; i<N; i++)

...

#pragma acc wait(1)

for(int i=0; i<N; i++)

If n is not specified,

async will go into a

default queue and

wait will wait all

previously queued

work.

19

Pipelined Code
#pragma acc data create(imgData[w*h*ch],out[w*h*ch])

copyin(filter)
{
for (long blocky = 0; blocky < nblocks; blocky++)
{

long starty = MAX(0,blocky * blocksize - filtersize/2);
long endy = MIN(h,starty + blocksize + filtersize/2);

#pragma acc update device(imgData[starty*step:(endy-starty)*step]) async(block%3+1)
starty = blocky * blocksize;
endy = starty + blocksize;

#pragma acc parallel loop collapse(2) gang vector async(block%3+1)
for (y=starty; y<endy; y++) for (x=0; x<w; x++) {

<filter code ommitted>
out[y * step + x * ch] = 255 - (scale * blue);
out[y * step + x * ch + 1] = 255 - (scale * green);
out[y * step + x * ch + 2] = 255 - (scale * red);

}
#pragma acc update self(out[starty*step:blocksize*step]) async(block%3+1)
}
#pragma acc wait
}

Cycle between 3 async

queues by blocks.

Wait for all blocks to

complete.

20

GPU Timeline Pipelined

We’re now able to

overlap compute

and copy.

21

OpenACC Routine Directive
Specifies that the compiler should generate a device copy of the function/subroutine
and what type of parallelism the routine contains.

Clauses:

gang/worker/vector/seq

Specifies the level of parallelism contained in the routine.

bind

Specifies an optional name for the routine, also supplied at call-site

no_host

The routine will only be used on the device

device_type

Specialize this routine for a particular device type.

You must declare one

level of parallelism on

the routine directive.

22

Routine Directive: C/C++

// foo.h

#pragma acc routine seq

double foo(int i);

// Used in main()

#pragma acc parallel loop

for(int i=0;i<N;i++) {

array[i] = foo(i);

}

• At function source:

• Function needs to be built for the
GPU.

• It will be called by each thread
(sequentially)

• At call the compiler needs to know:

• Function will be available on the GPU

• It is a sequential routine

options
nvidia NVreg_RegistryDwords=RMNvLinkSpeedControl=
0x9;RMNumaOnlining=0x1;
options nvidia NVreg_RmMsg=nvlink

options
nvidia NVreg_RegistryDwords=RMNvLinkSpeedControl=
0x9;RMNumaOnlining=0x1;
options nvidia NVreg_RmMsg=nvlink

23

Resources
https://www.openacc.org/resources

Success Stories
https://www.openacc.org/success-stories

Events
https://www.openacc.org/events

OPENACC Resources
Guides ● Talks ● Tutorials ● Videos ● Books ● Spec ● Code Samples ● Teaching Materials ● Events ● Success Stories ● Courses ● Slack ● Stack Overflow

Compilers and Tools
https://www.openacc.org/tools

FREE

Compilers

https://www.openacc.org/community#slack

https://www.openacc.org/resources
https://www.openacc.org/success-stories
https://www.openacc.org/events
https://gcc.gnu.org/wiki/OpenACC
https://www.openacc.org/tools
https://www.pgroup.com/products/community.htm
https://www.openacc.org/community#slack

