Steve Abbott <

Data Regions

AGENDA

Deep Copy

JACOBI ITERATION

while (err > tol && iter < iter max) {
err=0.0;

for(int j = 1; j < n-1; J++) { . .
for(int i = 1; i < m-1; i++) { /\(],J4'1)

Anew[j][i] = 0.25 * (A[Jj][i+1] + A[j][i-1] +
A[3-1][1] + A[3+1][i]);

A(i-1,))

@
err = max(err, abs(Anew[j][i] - A[]j]I[i])): .
} /\(]’

}

for(int j = 1; j < n-1; j++) {
for(int 1 = 1; i < m-1; i++) {
A[j]1[i] = Anew[]][1i]’
}
}

iter++;
} 3 NVIDIA.

6.00X

5.00X

4.00X

3.00X

2.00X

1.00X

0.00X

Compiler: PGl 16.10

Speed-up (Higher is Better)

Why did OpenACC
slow down here?

Single Thread

2 Threads

4 Threads

6 Threads

5.00X

8 Threads

Intel Xeon E5-
2698 v3 @
2.30GHz
(Haswell)
VS.
NVIDIA Tesla
K40 & P100

0.61X 0.66X

OpenACC (K40) OpenACC (P100)

i ™

Eile View Window PRun Help
g~ ey G| QAE|F RIEEL|IA

& “01-parallel-kd0.nvprof &3 = 0 &
o0s 25 50 5 755 1005 =)
L OpenACc LT T LT L LT LD L L LT LT LD T LT TL LTI [—
o AN AT MR TANN RO IINW
" Driver API AR Onnnn—"n;""-

L Profiling Overhead | |
[=] [0] Tesla K40m
[=| Context1 (CUDA)
L 5F MemCpy (HtoD)
L 5F MemCpy (DtoH]
[=] Compute
L 5F 58.4% main_55_gpu
L 5F 41.3% main_66_gpu

m

Very low

e s Compute/Memcpy
Tl Analysis 23 GPU Details £ Conscle Settings .
= 4r | @ Export PDF Report Results rat]o
1. CUDA Application Analysis # Low Compute f Memcpy Efficiency [3.952 = /51155 = = 0.077]

The amount of time performing compute is low relative to the amount of time requircd for memcpy.

2. Check Overall GPU Usage

The analysis results on the right indicate & Low Memcpy/Compute Overlap [0 ns /3962 5 = 0%]

potential problems in how your application | | | The percentage of tirme when memcpy is being performed in parallel with compute is low., More...

is taking advantage of the GPU's available

compute and data movement capabilities. 5 3067 < = 0%

You Fs:lht:uuluzj examine the informaginn = & Low Kernel Concurrency [0 = /3562 s = 0% Com pute 4 SecondS
provided with each result to determine if The percentage of time when two kernels are being executed in parallel is low.

you can make changes to your application

to increase GPU utilization. # Low Memcpy Throughput [2.875 ME/s avg, for memcpys accounting for 0% Memory Copy 51 SeCondS

[[y, Examine Individual Kernels

-
! =0 | nm . v ro Far oreo nns

] The memory copies are not fully using the available host to device bandwidth,) (<= U
i I

ARCHITECTURE
BASIC CONCEPT

SIMPLIFIED, BUT SADLY TRUE

CPU

S T T T

High

GPU

TAARRARR

Capacity

R

Eile View Window Run Help

t *01-parallel-kd0.nvprof 23
| 2

) =y &~ |

= (F
= (&)

|F rIEEE|A-

m

aLL_EliL. ﬂLL_Cn'-.lL_'JﬂLﬂH—_‘-'IﬂHIﬂ:u gLl SIS _uUd... ﬂLL_E.'-.IL_'.IﬂLﬂk‘;‘-‘lﬂPlﬂnu £ —_EiTLee L AL = I e L= ¥ | Lk =t
N EREEEEE I R N EEERERE I RN
- Driver AP T SN RRRRNRRRRENEE RN RRRRN EEUNARRRUNENREEY RERAAR
L Profiling Cverhead
[=] [0] Tesla K40m
[=] Context 1 (CUDA)
-7 MemCpy [rtoD) ANNN i 1NN I
- 7 MemCpy (Dtot) ARNRRRN TRRNERN HARNAR
[=] Compute I I I
L ¥ 58.4% main_55_gpu i
L 5F 41.3% main 66 gpu | |
4
[Analysis &3 GPU Details & Console [B T
1 | @ExpurtF'DF Fepad —~
2. Check Overall GPU U . ompute is low relative to the amount of time required for memcpy, More..
=| PCle Copies [, .
The analysis results on the right '
potential problems in how your mcpy is being performed in parallel with compute is low. More...
is taking advantage of the GPLU's
Vou thould examine the mformation pearrency [0 ne 2207 2= 0 |
provided with each result to determine if The percentage of time when two kernels are being executed in parallel is low. More...
you can make changes to your application
to increase GPU utilization. # Low Memcpy Throughput | 3.375 MB/s avg, for memcpys accounting for 0% of all memcpy time]
The memaory copies are not fully using the available host to device bandwidth, More..

| L} Examine Individual Kemels |

(=} nm e " rn [Ll e nne

-

Excessive Data Transfers

while (err > tol && iter < iter max)

{

err=0.0; #pragma acc parallel loop

A, Anew resident A, Anew resident on
on host *
accelerator
for(int j =1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {
Anew[j][i] = 0.25 * (A[j][i+1] +
A[j][i-1] + A[j-1][i] +
A[j+1][i]):
err = max(err, abs(Anew[j][i] -

A[31[i]1);

These copies
happen every
iteration of the
outer while
loop!

<oT 00N

<T OO

}

A, Anew resident g A, Anew resident on
} s on host accelerator

while (err > tol && iter < iter max) {

}

Evaluate Data Locality

err=0.0;

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1;

Anew[j][i] = 0.25 * (A[j][i+1] + A[j]1[i-1] +
A[3-1][1] + A[3+1][i]);

err = max(err, abs(Anew[j][i] - A[j1[i])):;

}
}

for(int j =1; j < n-1;
for(int i =
A[Jj]1[i] = Anew[3j][i]’
}
}

iter++;

1; 1 < m-1;

i++) |

j++) |
i++) |

Does the CPU need the data
between these loop nests?

Does the CPU need the data
between iterations of the
convergence loop?

Data regions

The data directive defines a region of code in which GPU arrays remain on
the GPU and are shared among all kernels in that region.

#pragma acc data A

{ o
#pragma acc parallel loop Arrays used within the

data region will remain

> Data Region

on the GPU until the
#pragma acc parallel loop end of the data region.

})

Data Clauses

Allocates memory on GPU and copies data from host to GPU
when entering region and copies data to the host when
exiting region.

Allocates memory on GPU and copies data from host to GPU
when entering region.

Allocates memory on GPU and copies data to the host when
exiting region.

Allocates memory on GPU but does not copy.

Data is already present on GPU from another containing
data region.

The variable is a device pointer (e.g. CUDA) and can be
used directly on the device.

Array Shaping

Compiler sometimes cannot determine size of arrays

Must specify explicitly using data clauses and array “shape”

C/C++

#pragma acc data copyin(a[0:nelem]) copyout(b[s/4:3*s/4])

Fortran

Sacc data copyin(a(l:end)) copyout(b(s/4:3*s/4))

Note: data clauses can be used on data, parallel, or kernels

DATA REGIONS HAVE REAL CONSEQUENCES

Simplest Kernel

With Global Data Region

int main(int argc, char** argv){

float A[1000];

#pragma acc kernels
for(int iter = 1; iter < 1000 ; iter++){
Aliter] = 1.0;

} Al]
Copied
To Host

A[10] = 2.0;

printf("A[10] = %f", A[10]);
}

output:
A[10] = 2.0

int main(int argc, char** argv){

float A[1000];

#pragma acc data copy(2

{

#pragma acc kernels
for(int iter = 1; iter < 1000 ; iter++){
Aliter] = 1.0;

} Still
Runs On
A[10] = 2.0; Host

} Al]
Copied
To Host

printf("A[10] = %f", A[10]);
}

13 <ANVIDIA.

Add Data Clauses

#pragma acc data copy(A) create (Anew) Copy A to/from the
while (err > tol && iter < iter max) { { accelerator only when
err=0.0; needed.

#pragma acc parallel loop
for(int j =1; j < n-1; j++) { .
for(int i = 1; i < m-1; i++) { Create Anew as a device
temporary.

Anew[j][i] = 0.25 * (A[j]1[i+1] + A[j][i-1] +
A[j-1]1[i] + A[Jj+1]1[i])~

err = max(err, abs(Anew[j][i] - A[j][i])) -
}
}

#pragma acc parallel loop
for(int j =1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {
A[3]1[i] = Anew[j][i];
}
}
iter++;
}

Rebuilding the code

$ pgcc -fast -acc -ta=tesla -Minfo=all laplace2d.c

main:

40,

56,

56,
59,
67,

67,
70,

Loop not fused: function call before adjacent loop
Generated vector sse code for the loop

Loop not vectorized/parallelized: potential early exits
Accelerator kernel generated

56, Max reduction generated for error

57, #pragma acc loop gang /* blockIdx.x */

59, #pragma acc loop vector(256) /* threadIdx.x */
Generating Tesla code

Loop is parallelizable

Accelerator kernel generated

68, #pragma acc loop gang /* blockIdx.x */

70, #pragma acc loop vector (256) /* threadIdx.x */
Generating Tesla code

Loop is parallelizable

Visual Profiler: Data Region

0755
1

] [=] Process "a.out” [(216&5)

=
Cw

[=| Thread 2863577216
L OpenaCC

- Driver AP
L Profiling Overhead
[=] [0] Tesla K40m
[=] Context 1 (CUDA)

= Compute

[=| Streams
L Stream 13

L 5F MemCpy [HtoD)
L SF MemCpy [DtoH)

L 5F 58.0% main_56_gpu
L 5F 38.3% main_
L 5F 3.7% main_56_gpu_...

67_gpu

T

Data Movement Now
at Beginning and End

4 (L}

(Cwonvsaroriec Yy sl Denfilar: Mats Dasdan el
File View Window Run Help
my=1] ey &R & F R|IEEE|A-
& % "01-parallel-k40.nvprof © "03-parallel-data-tile-k40.nvprof 52 =g |
O 2455 055 0555 06s 0655 07s =]

Visual Profiler: Data Region

-
% NVIDIA Visual Profiler

File View Window Run
i

& % "01-parallel-k40.nvprof
i

Help
e e~ @ Q@ Was 112ms
‘,,"'03-paraIIel-data-tile-k40.nvprof =g |
0483 s 0.4?? 5 0.4!?8 § 0.4?9 5 049 B

0,486 s

B [=] Process "a.out” [(216&5)
E [=| Thread 2863577216

|
L OpenaCC
- Driver AP
L Profiling Overhead
[=] [0] Tesla K40m
[=] Context 1 [CUDA)

= Compute

[=| Streams
L Stream 13

L 5F MemCpy [HtoD)
L SF MemCpy [DtoH)

L 5F 58.0% main_56_gpu
L 5F 38.3% main_67_gpu
L 5F 3.7% main_!

acc_compute_construct...

acc_wait@laplace?d.c:67

6

acc_compute_construct... acc_compute_construct@laplace?d.c:5

acc_compute_construct@laplace?d.c:56

acc_engqueue_download@laplace?d.c:56 | acc_wait@laplace?d.c:67 acc_enqueue_download @laplace?d.c:56

cuMemcpyDtoHAsync cuStreamSynchronize

cuStreamSynchronize

cuMemcpyDtoHAsy

ey | manbigpe | maneopu | msnoopu |

Iteration 1 Iteration 2

So_gpu_..

Speed-Up (Higher is Better)

40.00X
34.71X

35.00X f—
30.00X

Intel Xeon E5-2698 v3 @ 2.30GHz (Haswell)
25.00X

VS.

NVIDIA Tesla K40 & Tesla P100
20.00X Socket/Socket: 7X ==
15.00X 14.92X
10.00X Socket/Socket: 3X ===
5.00X 3.69X 4.59X 2008

= w m N
0.00x LN -
Single Thread 2 Threads 4 Threads 6 Threads 8 Threads OpenACC K40 OpenACC P100

Compiler: PGl 16.10

unStructured data Directives
Enter Data Directive

The enter data directive handles device
memory allocation

You may use either the create or the
copyin clause for memory allocation

You may allocate more than one array at
a time, and you may allocate arrays in
any function

The enter data directive is not the start
of a data region, because you may have
multiple enter data directives

#pragma acc enter data clauses

< Sequential and/or Parallel code >

#pragma acc exit data clauses

I$acc enter data clauses

< Sequential and/or Parallel code >

I$acc exit data clauses

19 <4 NVIDIA.

unStructured data Directives
Exit Data Directive

The exit data directive handles device
memory deallocation

You may use either the delete or the
copyout clause for memory deallocation

You may use the exit data directive to
deallocate any array that was previously
allocated with the enter data directive

One of the biggest advantages of using
unstructured data directives is the ability
to do device memory allocation and
deallocation in completely different
functions

#pragma acc enter data clauses

< Sequential and/or Parallel code >

#pragma acc exit data clauses

I$acc enter data clauses

< Sequential and/or Parallel code >

I$acc exit data clauses

20 <ANVIDIA.

unstructured vs structured
With a simple code

Unstructured

Structured

Can have multiple starting/ending points
Memory exists until explicitly deallocated

Can branch across multiple functions

= Must have a explicit start/end point
= Memory only exists within the data region

= Must be within a single function

#pragma acc enter data copyin(a[@:N],b[@:N]) \
create(c[0@:N])

#pragma acc parallel loop

for(int 1 = 0; 1 < N; i++){ for(int i =
c[i] = a[i] + b[i]; c[i] = a[i] + b[i];
} }
#pragma acc exit data copyout(c[@:N]) \ }
delete(a,b)

#pragma acc data copyin(a[@:N],b[@:N]) \
copyout(c[@:N])

#pragma acc parallel loop
5 01 < Ny i++){

21 <ANVIDIA.

unStructured data Directives

int* allocate array(int N){

int* ptr = (inE *)dmilloc(Nt*(sizc[egfﬁgt)); This is an example code where the memory
#pragma aCC enter data create(ptr g
i [allocation/deallocation is handled in
¥ separate functions
o . * t
VOL‘;Pieg?nﬁlzccacteeﬂfadﬁ(tg”tdelzt';)(’gtP) The data region is not explicitly defined by a
free(ptr); starting point and an ending point
}
it e The data enter and exit will be decided by
int* a = allocate_array(100); whenever the programmer calls the
e s e allocate/deallocate functions
alo] = o;
}
deallocate array(a);
}

22 NVIDIA.

C structs

Without dynamic data members

Dynamic data members are anything
contained within a struct that can have a
variable size (dynamically allocated
arrays)

OpenACC is easily able to copy our struct
to device memory because everything in
our float3 struct has a fixed size

If float3 has any members with a varying
size, then the programmer will need to
explicitly allocate that member in device
memory

t

}

pedef struct {

float x, y, z;

float3;
int main(int argc, char* argv[]){
int N = 5
float3* f3 = malloc(N * sizeof(float3));
#pragma acc enter data create(f3[0:N])
#pragma acc kernels
for(int i = 9; i < N; i++){
f3[1i].x = 5
f3[i].y = 5
f3[i].z = 5

}

}

#pragma acc exit data delete(f3)
free(f3);

C structs

With dynamic data members

OpenACC is not automatically able to
copy dynamic pointers to the device

You must first copy the struct into
device memory

Then you must allocate/copy the
dynamic members into device memory

To deallocate, you must first deallocate
the dynamic members

Then deallocate the struct

typedef struct {
float *arr;
int n;

} vector;

int main(int argc, char* argv[]){
vector v;

V.n =
v.arr =

_#pragma acc enter data copyin(v)

Fpragma acc enter data create(v.arr[@:v.n])l

(float*) malloc(v.n*sizeof(float));

#pragma acc exit data delete(v.arr)
Fpragma acc exit data delete(Vv)
free(v.arr);

}

CUda managed memory Commqqu referred to as
Simplified Developer “unified memory.

Without Managed Memory With Managed Memory

CPU and GPU memories are
combined into a single, shared pool

System GPU Memory Managed Memory
Memory

25 <4 NVIDIA.

Managed memory

Limitations

With Managed Memory

The programmer will almost always be able to
get better performance by manually handling
data transfers

Memory allocation/deallocation takes longer
with managed memory

Cannot transfer data asynchronously

Cannot be used with static memory*

L

Managed Memory

Performance depends on how the data is
accessed

26 <ANVIDIA.

Managed memory

Handling explicit data transfers between the host and device (CPU and GPU) can be
difficult

PGI provides the managed target option for NVIDIA Tesla GPUs
This will tell the compiler allocate all memory as CUDA Managed Memory

This generally means that the programmer will do less work, but the code is less
portable.

$ pgcc -acc -ta=tesla:managed -Minfo=accel main.c

27 NVIDIA.

Pros & Cons of Managed Memory

Simple porting of complex data = Limited to the PGI compiler and

structures NVIDIA GPUs, no portability

Concentrate on parallelism first and = Performance will depend heavily on
data later access pattern

28 <A NVIDIA.

Next Lecture

Friday - Advanced OpenACC

