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AGENDA
Data Regions

Deep Copy
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JACOBI ITERATION
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while ( err > tol && iter < iter_max ) {

err=0.0;

#pragma acc parallel loop reduction(max:err)

for( int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

#pragma acc parallel loop

for( int j = 1; j < n-1; j++) {

for( int i = 1; i < m-1; i++ ) {

A[j][i] = Anew[j][i];      

}

}

iter++;

}

A(i,j)
A(i+1,j)A(i-1,j)

A(i,j-1)

A(i,j+1)
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Speed-up (Higher is Better)

Why did OpenACC 

slow down here?

Intel Xeon E5-

2698 v3 @ 

2.30GHz 

(Haswell)

vs.

NVIDIA Tesla 

K40 & P100

Compiler: PGI 16.10
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Very low 

Compute/Memcpy

ratio

Compute 4 seconds

Memory Copy 51 seconds
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High 

Capacity 

Memory

Shared Cache

High Bandwidth 

Memory

Shared Cache

$ $ $ $ $ $ $ $

$ $ $ $ $ $

$ $ $ $ $ $

PCIe Bus

GPUCPU

ARCHITECTURE
BASIC CONCEPT

SIMPLIFIED, BUT SADLY TRUE
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PCIe Copies

112ms/iteration
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Excessive Data Transfers

while ( err > tol && iter < iter_max ) 

{

err=0.0;

...

}

#pragma acc parallel loop

for( int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {     

Anew[j][i] = 0.25 * (A[j][i+1] + 

A[j][i-1] + A[j-1][i] + 

A[j+1][i]);

err = max(err, abs(Anew[j][i] –

A[j][i]);

}

}

...

A, Anew resident 

on host

A, Anew resident 

on host

A, Anew resident on 

accelerator

A, Anew resident on 

accelerator

These copies 

happen every 

iteration of the 

outer while 

loop!

C

o

p

y
C

o

p

y
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Evaluate Data Locality

while ( err > tol && iter < iter_max ) {

err=0.0;

#pragma acc parallel loop

for( int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

#pragma acc parallel loop

for( int j = 1; j < n-1; j++) {

for( int i = 1; i < m-1; i++ ) {

A[j][i] = Anew[j][i];      

}

}

iter++;

}

Does the CPU need the data 

between these loop nests?

Does the CPU need the data 

between iterations of the 

convergence loop?
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Data regions

The data directive defines a region of code in which GPU arrays remain on 
the GPU and are shared among all kernels in that region.

#pragma acc data

{

#pragma acc parallel loop

...

#pragma acc parallel loop

...

}

Data Region

Arrays used within the 

data region will remain 

on the GPU until the 

end of the data region.



11

Data Clauses

copy ( list ) Allocates memory on GPU and copies data from host to GPU 

when entering region and copies data to the host when 

exiting region.

copyin ( list ) Allocates memory on GPU and copies data from host to GPU 

when entering region.

copyout ( list ) Allocates memory on GPU and copies data to the host when 

exiting region.

create ( list ) Allocates memory on GPU but does not copy.

present ( list ) Data is already present on GPU from another containing 

data region.

deviceptr( list ) The variable is a device pointer (e.g. CUDA) and can be 

used directly on the device.
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Array Shaping

Compiler sometimes cannot determine size of arrays

Must specify explicitly using data clauses and array “shape”

C/C++

#pragma acc data copyin(a[0:nelem]) copyout(b[s/4:3*s/4])

Fortran

!$acc data copyin(a(1:end)) copyout(b(s/4:3*s/4))

Note: data clauses can be used on data, parallel, or kernels
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int main(int argc, char** argv){

float A[1000];

#pragma acc kernels

for( int iter = 1; iter < 1000 ; iter++){

A[iter] = 1.0;

}

A[10] = 2.0;

printf("A[10] = %f", A[10]);

}

DATA REGIONS HAVE REAL CONSEQUENCES

Simplest Kernel With Global Data Region

Output:

A[10] = 2.0 

int main(int argc, char** argv){

float A[1000];

#pragma acc kernels

for( int iter = 1; iter < 1000 ; iter++){

A[iter] = 1.0;

}

A[10] = 2.0;

printf("A[10] = %f", A[10]);

}

Output:

A[10] = 1.0 

A[ ]

Copied

To GPU

A[ ]

Copied

To Host

Runs

On

Host

#pragma acc data copy(A)

{

}

A[ ]

Copied

To GPU

Still

Runs On

Host

A[ ]

Copied

To Host



14

Add Data Clauses
#pragma acc data copy(A) create(Anew)

while ( err > tol && iter < iter_max ) {

err=0.0;

#pragma acc parallel loop

for( int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

#pragma acc parallel loop

for( int j = 1; j < n-1; j++) {

for( int i = 1; i < m-1; i++ ) {

A[j][i] = Anew[j][i];      

}

}

iter++;

}

Copy A to/from the 

accelerator only when 

needed.

Create Anew as a device 

temporary. 
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Rebuilding the code

15

$ pgcc -fast -acc -ta=tesla -Minfo=all laplace2d.c

main:

40, Loop not fused: function call before adjacent loop

Generated vector sse code for the loop

51, Generating copy(A[:][:])

Generating create(Anew[:][:])

Loop not vectorized/parallelized: potential early exits

56, Accelerator kernel generated

56, Max reduction generated for error

57, #pragma acc loop gang /* blockIdx.x */

59, #pragma acc loop vector(256) /* threadIdx.x */

56, Generating Tesla code

59, Loop is parallelizable

67, Accelerator kernel generated

68, #pragma acc loop gang /* blockIdx.x */

70, #pragma acc loop vector(256) /* threadIdx.x */

67, Generating Tesla code

70, Loop is parallelizable
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Visual Profiler: Data Region

16

Data Movement Now 

at Beginning and End
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Visual Profiler: Data Region

17

Iteration 1 Iteration 2

Was 112ms
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Socket/Socket: 3X
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Intel Xeon E5-2698 v3 @ 2.30GHz (Haswell)

vs.

NVIDIA Tesla K40 & Tesla P100

Compiler: PGI 16.10
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unStructured data Directives

The enter data directive handles device 
memory allocation

You may use either the create or the 
copyin clause for memory allocation

You may allocate more than one array at 
a time, and you may allocate arrays in 
any function

The enter data directive is not the start 
of a data region, because you may have 
multiple enter data directives

Enter Data Directive

#pragma acc enter data clauses

< Sequential and/or Parallel code >

#pragma acc exit data clauses

!$acc enter data clauses

< Sequential and/or Parallel code >

!$acc exit data clauses
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unStructured data Directives

The exit data directive handles device 
memory deallocation

You may use either the delete or the 
copyout clause for memory deallocation

You may use the exit data directive to 
deallocate any array that was previously 
allocated with the enter data directive

One of the biggest advantages of using 
unstructured data directives is the ability 
to do device memory allocation and 
deallocation in completely different 
functions

Exit Data Directive

#pragma acc enter data clauses

< Sequential and/or Parallel code >

#pragma acc exit data clauses

!$acc enter data clauses

< Sequential and/or Parallel code >

!$acc exit data clauses
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unstructured vs structured
With a simple code

#pragma acc enter data copyin(a[0:N],b[0:N]) \
create(c[0:N])

#pragma acc parallel loop
for(int i = 0; i < N; i++){

c[i] = a[i] + b[i];
}

#pragma acc exit data copyout(c[0:N]) \
delete(a,b)

#pragma acc data copyin(a[0:N],b[0:N]) \
copyout(c[0:N])

{
#pragma acc parallel loop
for(int i = 0; i < N; i++){

c[i] = a[i] + b[i];
}

}

Unstructured Structured

Can have multiple starting/ending points

Memory exists until explicitly deallocated

Can branch across multiple functions

▪ Must have a explicit start/end point

▪ Memory only exists within the data region

▪ Must be within a single function
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unStructured data Directives
Branching across multiple functions

int* allocate_array(int N){
int* ptr = (int *) malloc(N * sizeof(int));
#pragma acc enter data create(ptr[0:N])
return ptr;

}

void deallocate_array(int* ptr){
#pragma acc exit data delete(ptr)
free(ptr);

}

int main(){
int* a = allocate_array(100);
#pragma acc kernels
{

a[0] = 0;
}
deallocate_array(a);

}

This is an example code where the memory 
allocation/deallocation is handled in 
separate functions

The data region is not explicitly defined by a 
starting point and an ending point

The data enter and exit will be decided by 
whenever the programmer calls the 
allocate/deallocate functions



23

C structs
Without dynamic data members

typedef struct {
float x, y, z;

} float3;

int main(int argc, char* argv[]){
int N = 10;
float3* f3 = malloc(N * sizeof(float3));

#pragma acc enter data create(f3[0:N])

#pragma acc kernels
for(int i = 0; i < N; i++){
f3[i].x = 0.0f;
f3[i].y = 0.0f;
f3[i].z = 0.0f;

}

#pragma acc exit data delete(f3)
free(f3);

}

Dynamic data members are anything 
contained within a struct that can have a 
variable size (dynamically allocated 
arrays)

OpenACC is easily able to copy our struct 
to device memory because everything in 
our float3 struct has a fixed size

If float3 has any members with a varying 
size, then the programmer will need to 
explicitly allocate that member in device 
memory
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C structs
With dynamic data members

typedef struct {
float *arr;
int n;

} vector;

int main(int argc, char* argv[]){

vector v;
v.n = 10;
v.arr = (float*) malloc(v.n*sizeof(float));

#pragma acc enter data copyin(v)
#pragma acc enter data create(v.arr[0:v.n])

...

#pragma acc exit data delete(v.arr)
#pragma acc exit data delete(v)
free(v.arr);

}

OpenACC is not automatically able to 
copy dynamic pointers to the device

You must first copy the struct into 
device memory

Then you must allocate/copy the 
dynamic members into device memory

To deallocate, you must first deallocate 
the dynamic members

Then deallocate the struct
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Simplified Developer Effort

Without Managed Memory With Managed Memory

Managed MemorySystem 
Memory

GPU Memory

Commonly referred to as 

“unified memory.”
Cuda managed memory

CPU and GPU memories are 
combined into a single, shared pool
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Managed memory

The programmer will almost always be able to 
get better performance by manually handling 
data transfers

Memory allocation/deallocation takes longer 
with managed memory

Cannot transfer data asynchronously

Cannot be used with static memory*

Performance depends on how the data is 
accessed

Limitations

With Managed Memory

Managed Memory
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Managed memory

Handling explicit data transfers between the host and device (CPU and GPU) can be 
difficult

PGI provides the managed target option for NVIDIA Tesla GPUs

This will tell the compiler allocate all memory as CUDA Managed Memory

This generally means that the programmer will do less work, but the code is less 
portable.

Why and How to Use It

$ pgcc –acc –ta=tesla:managed –Minfo=accel main.c
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Using managed memory should be a stepping stone to quickly port the code.

Programmer based parallelization

Programmer based optimizations

Programmer based restrictions

Pro Con

Pros & Cons of Managed Memory

Simple porting of complex data 
structures

Concentrate on parallelism first and 
data later

▪ Limited to the PGI compiler and 
NVIDIA GPUs, no portability

▪ Performance will depend heavily on 
access pattern
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Next Lecture

Friday – Advanced OpenACC


