
Steve Abbott <sabbott@nvidia.com>, November 15, 2017

OpenACC Fundamentals

2

AGENDA
Data Regions

Deep Copy

3

JACOBI ITERATION

3

while (err > tol && iter < iter_max) {

err=0.0;

#pragma acc parallel loop reduction(max:err)

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

#pragma acc parallel loop

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

A[j][i] = Anew[j][i];

}

}

iter++;

}

A(i,j)
A(i+1,j)A(i-1,j)

A(i,j-1)

A(i,j+1)

4

1.00X

1.94X

3.69X

4.59X

5.00X

0.61X 0.66X

0.00X

1.00X

2.00X

3.00X

4.00X

5.00X

6.00X

Single Thread 2 Threads 4 Threads 6 Threads 8 Threads OpenACC (K40) OpenACC (P100)

Speed-up (Higher is Better)

Why did OpenACC

slow down here?

Intel Xeon E5-

2698 v3 @

2.30GHz

(Haswell)

vs.

NVIDIA Tesla

K40 & P100

Compiler: PGI 16.10

5

Very low

Compute/Memcpy

ratio

Compute 4 seconds

Memory Copy 51 seconds

6

High

Capacity

Memory

Shared Cache

High Bandwidth

Memory

Shared Cache

$ $ $ $ $ $ $ $

$ $ $ $ $ $

$ $ $ $ $ $

PCIe Bus

GPUCPU

ARCHITECTURE
BASIC CONCEPT

SIMPLIFIED, BUT SADLY TRUE

7

PCIe Copies

112ms/iteration

8

Excessive Data Transfers

while (err > tol && iter < iter_max)

{

err=0.0;

...

}

#pragma acc parallel loop

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] +

A[j][i-1] + A[j-1][i] +

A[j+1][i]);

err = max(err, abs(Anew[j][i] –

A[j][i]);

}

}

...

A, Anew resident

on host

A, Anew resident

on host

A, Anew resident on

accelerator

A, Anew resident on

accelerator

These copies

happen every

iteration of the

outer while

loop!

C

o

p

y
C

o

p

y

9

Evaluate Data Locality

while (err > tol && iter < iter_max) {

err=0.0;

#pragma acc parallel loop

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

#pragma acc parallel loop

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

A[j][i] = Anew[j][i];

}

}

iter++;

}

Does the CPU need the data

between these loop nests?

Does the CPU need the data

between iterations of the

convergence loop?

10

Data regions

The data directive defines a region of code in which GPU arrays remain on
the GPU and are shared among all kernels in that region.

#pragma acc data

{

#pragma acc parallel loop

...

#pragma acc parallel loop

...

}

Data Region

Arrays used within the

data region will remain

on the GPU until the

end of the data region.

11

Data Clauses

copy (list) Allocates memory on GPU and copies data from host to GPU

when entering region and copies data to the host when

exiting region.

copyin (list) Allocates memory on GPU and copies data from host to GPU

when entering region.

copyout (list) Allocates memory on GPU and copies data to the host when

exiting region.

create (list) Allocates memory on GPU but does not copy.

present (list) Data is already present on GPU from another containing

data region.

deviceptr(list) The variable is a device pointer (e.g. CUDA) and can be

used directly on the device.

12

Array Shaping

Compiler sometimes cannot determine size of arrays

Must specify explicitly using data clauses and array “shape”

C/C++

#pragma acc data copyin(a[0:nelem]) copyout(b[s/4:3*s/4])

Fortran

!$acc data copyin(a(1:end)) copyout(b(s/4:3*s/4))

Note: data clauses can be used on data, parallel, or kernels

13

int main(int argc, char** argv){

float A[1000];

#pragma acc kernels

for(int iter = 1; iter < 1000 ; iter++){

A[iter] = 1.0;

}

A[10] = 2.0;

printf("A[10] = %f", A[10]);

}

DATA REGIONS HAVE REAL CONSEQUENCES

Simplest Kernel With Global Data Region

Output:

A[10] = 2.0

int main(int argc, char** argv){

float A[1000];

#pragma acc kernels

for(int iter = 1; iter < 1000 ; iter++){

A[iter] = 1.0;

}

A[10] = 2.0;

printf("A[10] = %f", A[10]);

}

Output:

A[10] = 1.0

A[]

Copied

To GPU

A[]

Copied

To Host

Runs

On

Host

#pragma acc data copy(A)

{

}

A[]

Copied

To GPU

Still

Runs On

Host

A[]

Copied

To Host

14

Add Data Clauses
#pragma acc data copy(A) create(Anew)

while (err > tol && iter < iter_max) {

err=0.0;

#pragma acc parallel loop

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

#pragma acc parallel loop

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

A[j][i] = Anew[j][i];

}

}

iter++;

}

Copy A to/from the

accelerator only when

needed.

Create Anew as a device

temporary.

15

Rebuilding the code

15

$ pgcc -fast -acc -ta=tesla -Minfo=all laplace2d.c

main:

40, Loop not fused: function call before adjacent loop

Generated vector sse code for the loop

51, Generating copy(A[:][:])

Generating create(Anew[:][:])

Loop not vectorized/parallelized: potential early exits

56, Accelerator kernel generated

56, Max reduction generated for error

57, #pragma acc loop gang /* blockIdx.x */

59, #pragma acc loop vector(256) /* threadIdx.x */

56, Generating Tesla code

59, Loop is parallelizable

67, Accelerator kernel generated

68, #pragma acc loop gang /* blockIdx.x */

70, #pragma acc loop vector(256) /* threadIdx.x */

67, Generating Tesla code

70, Loop is parallelizable

16

Visual Profiler: Data Region

16

Data Movement Now

at Beginning and End

17

Visual Profiler: Data Region

17

Iteration 1 Iteration 2

Was 112ms

18

1.00X
1.94X

3.69X
4.59X 5.00X

14.92X

34.71X

0.00X

5.00X

10.00X

15.00X

20.00X

25.00X

30.00X

35.00X

40.00X

Single Thread 2 Threads 4 Threads 6 Threads 8 Threads OpenACC K40 OpenACC P100

Speed-Up (Higher is Better)

Socket/Socket: 3X

Socket/Socket: 7X

Intel Xeon E5-2698 v3 @ 2.30GHz (Haswell)

vs.

NVIDIA Tesla K40 & Tesla P100

Compiler: PGI 16.10

19

unStructured data Directives

The enter data directive handles device
memory allocation

You may use either the create or the
copyin clause for memory allocation

You may allocate more than one array at
a time, and you may allocate arrays in
any function

The enter data directive is not the start
of a data region, because you may have
multiple enter data directives

Enter Data Directive

#pragma acc enter data clauses

< Sequential and/or Parallel code >

#pragma acc exit data clauses

!$acc enter data clauses

< Sequential and/or Parallel code >

!$acc exit data clauses

20

unStructured data Directives

The exit data directive handles device
memory deallocation

You may use either the delete or the
copyout clause for memory deallocation

You may use the exit data directive to
deallocate any array that was previously
allocated with the enter data directive

One of the biggest advantages of using
unstructured data directives is the ability
to do device memory allocation and
deallocation in completely different
functions

Exit Data Directive

#pragma acc enter data clauses

< Sequential and/or Parallel code >

#pragma acc exit data clauses

!$acc enter data clauses

< Sequential and/or Parallel code >

!$acc exit data clauses

21

unstructured vs structured
With a simple code

#pragma acc enter data copyin(a[0:N],b[0:N]) \
create(c[0:N])

#pragma acc parallel loop
for(int i = 0; i < N; i++){

c[i] = a[i] + b[i];
}

#pragma acc exit data copyout(c[0:N]) \
delete(a,b)

#pragma acc data copyin(a[0:N],b[0:N]) \
copyout(c[0:N])

{
#pragma acc parallel loop
for(int i = 0; i < N; i++){

c[i] = a[i] + b[i];
}

}

Unstructured Structured

Can have multiple starting/ending points

Memory exists until explicitly deallocated

Can branch across multiple functions

▪ Must have a explicit start/end point

▪ Memory only exists within the data region

▪ Must be within a single function

22

unStructured data Directives
Branching across multiple functions

int* allocate_array(int N){
int* ptr = (int *) malloc(N * sizeof(int));
#pragma acc enter data create(ptr[0:N])
return ptr;

}

void deallocate_array(int* ptr){
#pragma acc exit data delete(ptr)
free(ptr);

}

int main(){
int* a = allocate_array(100);
#pragma acc kernels
{

a[0] = 0;
}
deallocate_array(a);

}

This is an example code where the memory
allocation/deallocation is handled in
separate functions

The data region is not explicitly defined by a
starting point and an ending point

The data enter and exit will be decided by
whenever the programmer calls the
allocate/deallocate functions

23

C structs
Without dynamic data members

typedef struct {
float x, y, z;

} float3;

int main(int argc, char* argv[]){
int N = 10;
float3* f3 = malloc(N * sizeof(float3));

#pragma acc enter data create(f3[0:N])

#pragma acc kernels
for(int i = 0; i < N; i++){
f3[i].x = 0.0f;
f3[i].y = 0.0f;
f3[i].z = 0.0f;

}

#pragma acc exit data delete(f3)
free(f3);

}

Dynamic data members are anything
contained within a struct that can have a
variable size (dynamically allocated
arrays)

OpenACC is easily able to copy our struct
to device memory because everything in
our float3 struct has a fixed size

If float3 has any members with a varying
size, then the programmer will need to
explicitly allocate that member in device
memory

24

C structs
With dynamic data members

typedef struct {
float *arr;
int n;

} vector;

int main(int argc, char* argv[]){

vector v;
v.n = 10;
v.arr = (float*) malloc(v.n*sizeof(float));

#pragma acc enter data copyin(v)
#pragma acc enter data create(v.arr[0:v.n])

...

#pragma acc exit data delete(v.arr)
#pragma acc exit data delete(v)
free(v.arr);

}

OpenACC is not automatically able to
copy dynamic pointers to the device

You must first copy the struct into
device memory

Then you must allocate/copy the
dynamic members into device memory

To deallocate, you must first deallocate
the dynamic members

Then deallocate the struct

25

Simplified Developer Effort

Without Managed Memory With Managed Memory

Managed MemorySystem
Memory

GPU Memory

Commonly referred to as

“unified memory.”
Cuda managed memory

CPU and GPU memories are
combined into a single, shared pool

26

Managed memory

The programmer will almost always be able to
get better performance by manually handling
data transfers

Memory allocation/deallocation takes longer
with managed memory

Cannot transfer data asynchronously

Cannot be used with static memory*

Performance depends on how the data is
accessed

Limitations

With Managed Memory

Managed Memory

27

Managed memory

Handling explicit data transfers between the host and device (CPU and GPU) can be
difficult

PGI provides the managed target option for NVIDIA Tesla GPUs

This will tell the compiler allocate all memory as CUDA Managed Memory

This generally means that the programmer will do less work, but the code is less
portable.

Why and How to Use It

$ pgcc –acc –ta=tesla:managed –Minfo=accel main.c

28

Using managed memory should be a stepping stone to quickly port the code.

Programmer based parallelization

Programmer based optimizations

Programmer based restrictions

Pro Con

Pros & Cons of Managed Memory

Simple porting of complex data
structures

Concentrate on parallelism first and
data later

▪ Limited to the PGI compiler and
NVIDIA GPUs, no portability

▪ Performance will depend heavily on
access pattern

29

Next Lecture

Friday – Advanced OpenACC

