g W N

W ~J o U W

WWWWWRNRNNONONNDNONDNNRF R R e e
B WNhREFP OWOW-JOUd WNEFEF OWOWLWJOoOYUT B WNE O W

COSC 462 Homework 3: Matrix Matrix Multiply with MPI

Piotr Luszczek

September 21, 2016
The objective of HW3 is to implement parallel matrix-matrix multiplication in MPI:

C=AxB ABCeRV¥ (1)
The MPI ranks should form a square grid of processes P=SxS (N3 S=+vP). In other words, your code only needs
to only work for 2x2 =4 processes, 3x3 =9 processes, 4x4 =16 processes, and so on.
The matrices are square, of size N by N. With N =2, there will be 4 processes and the three matrices (A, B, and C) will
be 2 by 2 each. With N =3, there will be 9 processes and the three matrices (A, B, and C) will be 3 by 3 each. And so on.
The distribution of matrix elements is fixed and is exactly the same for all three matrices: each MPI process is mapped
to exactly one element of matrix A, B, and C. Rank 0 is mapped to element 0,0; rank 1 —to 1,0 and so forth. The mapping
code from a rank to row and column is:

void

rank2rowcol (int N, 4int rank, dint *row, dint *col) {
*row rank % N;
*col

rank / N;

The input matrix data (matrices A and B) are read from a file on rank O and the result data (matrix C) is written on rank 0.
You should read the data and write data with a code like this (assume that matrices A, B, and C are stored in row-major order):

int rank;
FILE *fd;
double localA, 1localB, 1localC;
double *A

double *B
double *C

(double *)malloc (sizeof (double) * N N) ;
(double *)malloc (sizeof (double) * N * N);
(double *)malloc (sizeof (double) * N * N);

MPI_Comm_size (MPI_COMM_WORLD, &rank);

if (0 == rank) {
fd = fopen("A.dat", "rb");
fread(A, sizeof (double), N*N, fd);

fclose (fd);

fd = fopen("B.dat", "rb");
fread(B, sizeof (double), N*N, fd);
fclose (fd);

}

distribute (N, A, &localdA); // FROM rank 0 TO all ranks
distribute (N, B, &localB); // FROM rank 0 TO all ranks

matmatmul (N, localA, localB, &localC);

collect (N, localC, C); // FROM all ranks TO rank 0
if (0 == rank) {

fd = fopen("C.dat", "wb");

fwrite(C, sizeof (double), N*N, fd);

fclose (fd) ;

