
1/14

COSC 462

 MPI and OpenMP Tasks

Piotr Luszczek

November 4, 2016

2/14

Tasks in OpenMP

● OpenMP 1 and 2

– Loop-based parallelism

● OpenMP 3

– Sibling model

● OpenMP 4

– Dataflow model

● OpenMP 4.5

– Priorities

3/14

OpenMP “task” Pragma

● #pragma omp task …

– if (expr)

– final (expr)

– untied

– mergeable

– default (shared | firstprivate | none)

– private (var1, var2, …)

– firstprivate (var1, var2, …)

– shared (var1, var2, …)

– depend (in:var1) (out:var2) (inout:var3)

– priority (value)

4/14

Scheduling Points

sort(left) sort(middle) sort(right)

#pragma omp task

#pragma omp taskwait

#pragma omp taskyield

5/14

MPI versus OpenMP

● Pure MPI Pros

– Scalability

– Data distribution and locality

– Communication is explicit

● Pure MPI Cons

– Steep learning/starting curve

– High latency

– Low bandwidth

– Only large granularity is a
good option for performance

– Difficult load balancing

● Pure OpenMP Pros

– Incremental parallelism is
easy

– Low latency

– High bandwidth

– Implicit communication

– Coarse and fine grain are OK

– Dynamic load balancing

● Pure OpenMP Cons

– Only shared memory

– Difficult data locality
management

– Getting affinity right is
complicated

6/14

MPI Threading Levels

● Request and obtain threading levels

– MPI_Init_thread(required, &provided)

● Known levels

– MPI_THREAD_SINGLE

– MPI_THREAD_FUNNELED
● Use with #pragma omp master

– MPI_THREAD_SERIALIZED
● Use with #pragma omp single

– MPI_THREAD_MULTIPLE

7/14

SERIALIZED Level of Threading

#pragma omp parallel
for (int t=0; t<LARGE; ++t) {
 buf[0] = t; // what is the value stored at buf[0]?

 // barrier ensure that buf[0] has consistent value
 #pragma omp barrier
 // without barrier, buf[0] might change after MPI_Send() started

 #pragma omp single
 MPI_Send(buf, …)

 // when does MPI_Send() starts?
 // when does MPI_Send() executes?
 // when does MPI_Send() finishes?
 // a barrier assures consistent view of buf[] across threads
 // the need for a barrier is more obvious when using MPI_Recv()
 #pragma omp barrier
}

8/14

Problem with Barriers and Ways to Avoid It

● Use of barriers limits performance

– It also executes memory fences

● It might be possible to remove barriers

– Algorithm-specific logic might enforce consistent memory state
● Which thread(s) update the buffer data?
● Which thread(s) use the buffer data?

● If barriers are removed then communication and computation
may be overlapped

– Other aspect of software and hardware might further limit the
overlap

9/14

Thread and Memory Affinity

● In threaded programming, affinity determines:

– Which thread executes on which core

– Which memory page ends up in which NUMA island

● On multicore processors, even sequential codes need to worry
about affinity

● Thread affinity is a bit mask, each bit, if set, allows to use the
corresponding core for executing thread’s code

– If only one of the bits is set then only one core will be used for it

● Memory affinity is complicated

– Memory affinity is not decided during allocation (by default)

– Memory affinity is decided on first use: first touch policy

– Utilities such as numactl may change that

● Each MPI library has it’s own affinity

10/14

Affinity in NUMA Multicore Systems

Thread 0: bit mask 0011Thread 0: bit mask 0011

10

2 3

Thread 1: bit mask 1000

Thread 0 could be migrated by kernel

Thread 1 will not be migrated by kernel

When?

Remote page

Local page

11/14

Enforcing Affinity

// first touch policy
// sequential
for (int i=0;i<N;++i) {
 a[i]=1;b[i]=2;c[i]=3;
}

#pragma omp parallel for
for (int i=0;i<N;++i) {
 c[i] = a[i]+b[i];
}

// first touch policy
#pragma omp parallel for
for (int i=0;i<N;++i) {
 a[i]=1;b[i]=2;c[i]=3;
}

#pragma omp parallel for
for (int i=0;i<N;++i) {
 c[i] = a[i]+b[i];
}

12/14

Affinity in Practice

● Command line tools

– NUMA control: numactl
● May be used to override first-touch policy

– Hardware stucture: hwloc
● Shows the memory and core hierarchy and allows to choose optimal

affinity

13/14

Going Hybrid: Steps

● Starting from scratch...

– Star with sequential code

– Add MPI first

– Add OpenMP next

● Starting with OpenMP code

– Add barriers to synchronize and make the execution “almost”
sequential

– Add MPI and data decomposition

– Incrementally remove synchronization

● Starting with MPI code...

– Add loop parallelism

– Add sibling tasking

– Add dataflow tasking

14/14

General Parallelization Guidelines

● Simplest approach

– Use MPI outside parallel regions

– Allow only master thread to communicate
● MPI_THREAD_FUNNELED creates the least parallel and

concurrency issues
– Make sure parallelism is sufficient for your hardware

● If thread-safe MPI is available, use MPI calls inside parallel
region

– Add MPI calls in parallel regions incrementally to keep track of
potential bugs

● Be aware of the overhead of MPI_THREAD_MULTIPLE

– MPI might allow multiple threads to enter but not all parts of the
library will run in parallel

– Thread synchronization inside MPI will cause delays and limit
parallelism

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

