
1/8

COSC 462

OpenMP Introduction

Piotr Luszczek

September 28, 2016



2/8

OpenMP

● OpenMP is a standard

– Freely available at 
www.openmp.org

– Open Multi-Processing
● Supported languages

– C

– C++

– Fortran
● Enabled during compilation

– Intel, GNU, LLVM, …
● -fopenmp
● -fopenmp=gomp
● -fopenmp=iomp

– Visual Studio
● /openomp

● OpenMP is supported by
modern compilers

– GNU gcc, gfortran
● GOMP

– LLVM clang
● In progress

– Intel icc, ifc
● iomp library

– IBM xlc, xlf

– Cray compiler

– PGI compiler (now part of
NVIDIA): pgcc, pgfortran

– Microsoft Visual Studio
● Not in Express version in

2010

http://www.openmp.org/


3/8

OpenMP is a Threading Interface

● There are many thread APIs

– POSIX threads

– WinThreads

– Intel Threading Building Blocks (TBB)

– Cilk++

– OpenMP

– Java threads

– ...
● Most of them are free or nearly so

● A lot of documentation available

– Source code

– Examples

– Manuals

– Tutorials

– ...



4/8

Basic Premise of OpenMP

● Make development of threaded code

– Easy

– Incremental

– Expose complex features when necessary
● Direct locking of mutexes
● Accessing vector units
● Using accelerators



5/8

OpenMP is NOT
● Meant for distributed memory parallel systems (by itself)

– It is often combined with MPI
● Implemented identically by all vendors

– Despite a lot of code reuse and sharing of ideas
● Guaranteed to make the most efficient use of shared memory

● Required to check for:

– data dependencies

– data conflicts

– race conditions, or

– deadlocks
● Required to check conformance of user code

● Provide compiler-generated automatic parallelization and/or
directives to the compiler to assist such parallelization

● Providing synchronous I/O to the same file when executed in
parallel

– The programmer is responsible for synchronizing I/O



6/8

History of OpenMP

● In the early 90's, vendors of shared-memory machines supplied
similar, directive-based, Fortran programming extensions.

● The user would augment a serial Fortran program with directives
specifying which loops were to be parallelized.

● The compiler would be responsible for automatically
parallelizing such loops across the SMP processors.

● Implementations were all functionally similar, but were divergent.

● First attempt at a standard was the draft for ANSIX3H5 in 1994.

– It was never adopted, largely due to waning interest as distributed
memory machines became popular.

● The OpenMP standard specification started in the spring of
1997, taking over ANSI X3H5

– Newer shared memory machine architectures started to become
prevalent.

● Led by the OpenMP Architecture Review Board (ARB).



7/8

Goals of OpenMP

● Standardization

– Provide a standard among a variety of shared memory
architectures/platforms

● Lean and mean

– Establish a simple and limited set of directives for programming
shared memory machines

– Significant parallelism can be implemented by using just 3 or 4
directives.

● Ease of Use

– Provide capability to incrementally parallelize a serial program,
unlike message-passing libraries which typically require an all or
nothing approach

– Provide the capability to implement both coarse-grain and fine-
grain parallelism

● Portability

– Supports Fortran (77, 90, and 95, 2003), C, and C++
● Public forum for API and membership



8/8

OpenMP Release History

● 1997

– Version 1.0 for Fortran
● 1998

– Version 1.0 for C/C++
● 1999

– Version 1.1 for Fortran
● 2000

– Version 2.0 for Fortran
● 2002

– Version 2.0 for C/C++

● 2005

– Version 2.5
● 2008

– Version 3.0
● 2011

– Version 3.1
● 2013

– Version 4.0
● 2015

– Version 4.5


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

