COSC 462

Parallel Algorithms Matrix-Matrix Multiplication

Piotr Luszczek

Remarks on Divisibility

- In practice, matrix dimensions and processor counts do not divide each other
 - N is not multiple of P
 - Solution: padding with 0's
 - New dimension N'=N+b
 - Especially useful for matrix-matrix multiply because 0's don't contribute to the result
 - CPUs often take shortcut when 0's are encountered in floating-point unit
 - If adding 0's is not an option, for example, small memory then the cleanup code has to be provided to deal with
 - P is not a square of an integer
 - Factor P into shape closest to a square
 - For example: P=128=8*16
 - Advantage:
 - Math equations for algorithm scaling will work
 - P is a prime number
 - Remove one process from computing and try to factor again

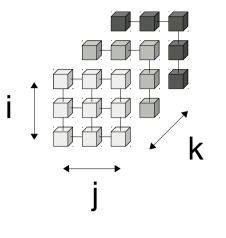
Why Study Matrix-Matrix Multiplication?

- Perfectly parallel yet contains reductions
- Various data distributions possible
- Plenty of examples and written material available
 - Algorithms: Cannon (systolic), SUMMA, PUMMA, 3D, 2.5D
- Separate algorithms can be developed for network topologies
 - Hypercube (SGI)
 - Fat-tree (Infiniband)
 - Dragonfly (Cray)
 - Torus (Tofu, K computer)
- Applications
 - Computational chemistry (change of basis for Hamiltonian)
 - Signal processing
 - Plasma containment physics
 - Tokamak design
 - github.com/ORNL-Fusion/aorsa2d

Definition and Observations

- Matrix notation
 - $C = A * B \qquad A, B, C \in \mathbb{R}^{N * N}$
- Element-wise
 - $c_{ij} = \sum a_{ik} b_{kj}$
- Code
- Observations:
 - A lot of work, little input/output data
 - Complexity(N) = $2N^3 + \Theta(N^2)$
 - $Data(N) = 3N^2 + \Theta(N)$
 - We call it: surface to volume effect
 - Parallelism abounds
 - The loops can be interchanged
 - Summation can use any variant of efficient reduction

Attempt 1: Single-element Tasks



- Tasks
 - N³ compute tasks $t_{i,j,k}$: $c_{i,j}^{(k)} = a_{i,k} b_{k,j}$
 - N² reduction tasks $r_{i,j}$: $\sum_{k} c_{i,j}^{(k)}$
- Data partitioning
 - Elements of C don't need to be replicated
 - Elements of A and/or B must be replicated or communicated
 - a1,1 is needed by c1,* and c*,1 (N+N tasks)
 - Must agglomerate to decrease message count

Attempt 2: Rowwise Agglomeration

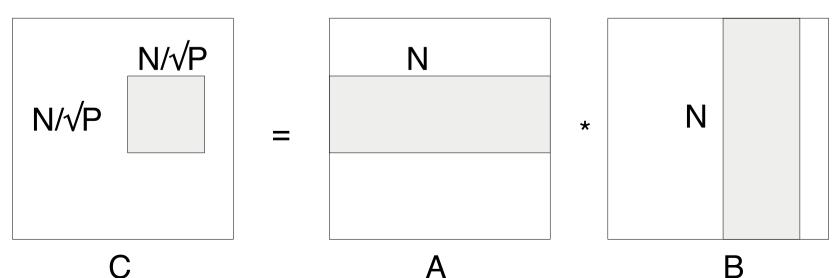
- $p_1 = \frac{p_1}{p_2} = \frac{1}{C} + \frac{1}{B}$
- Rows of B have to be communicated:
 - for (i = 0; i < N; ++i)
 sendrecv((self+1) % P, (self-1+P) % P, B[i][:])</pre>

 \mathbf{p}_{0}

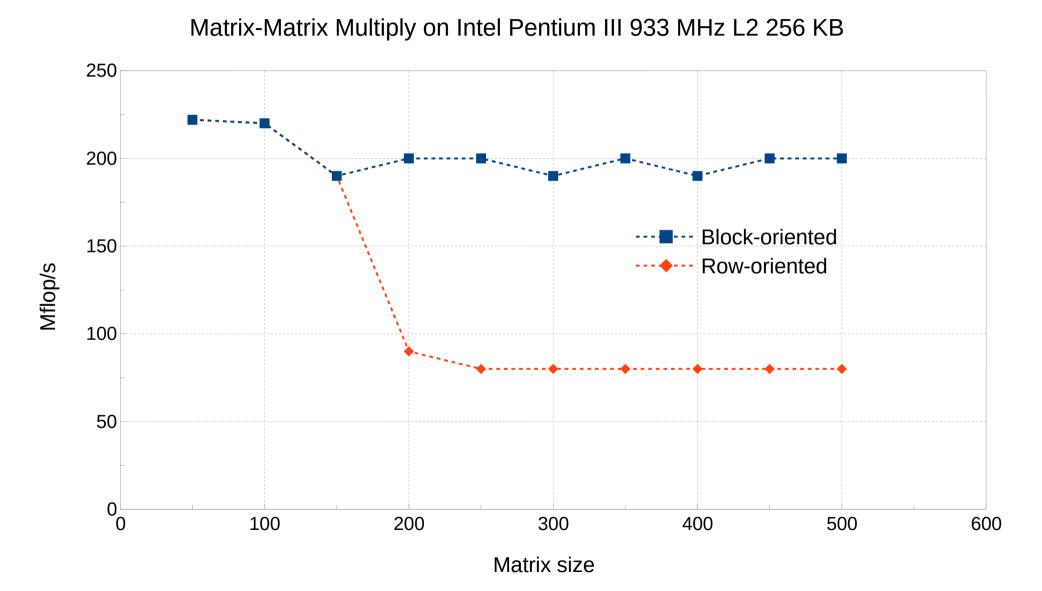
- Each processor must exchange N messages
 - Total : $N^*N \rightarrow \Theta(N^2)$
- Computation to communication ratio
 - 2N³ computations on P processors: 2N³/P
 - Entire B is communicated: N²
 - Ratio: 2N/P
 - The ratio is very small (bad)
 - The problem needs to grow linearly with number of processors

Attempt 3: Cannon's Algorithm

- Main idea:
 - Use 2D processor grid and 2D partitioning of the matrix
- Computation to communication ratio
 - Computation for a single processor: $2 * N/\sqrt{P * N}$
 - Communication to send the data to a processor: $2*N/\sqrt{P*N}$
 - Ratio: N/√P
 - Compare to N/P for rowwise agglomeration

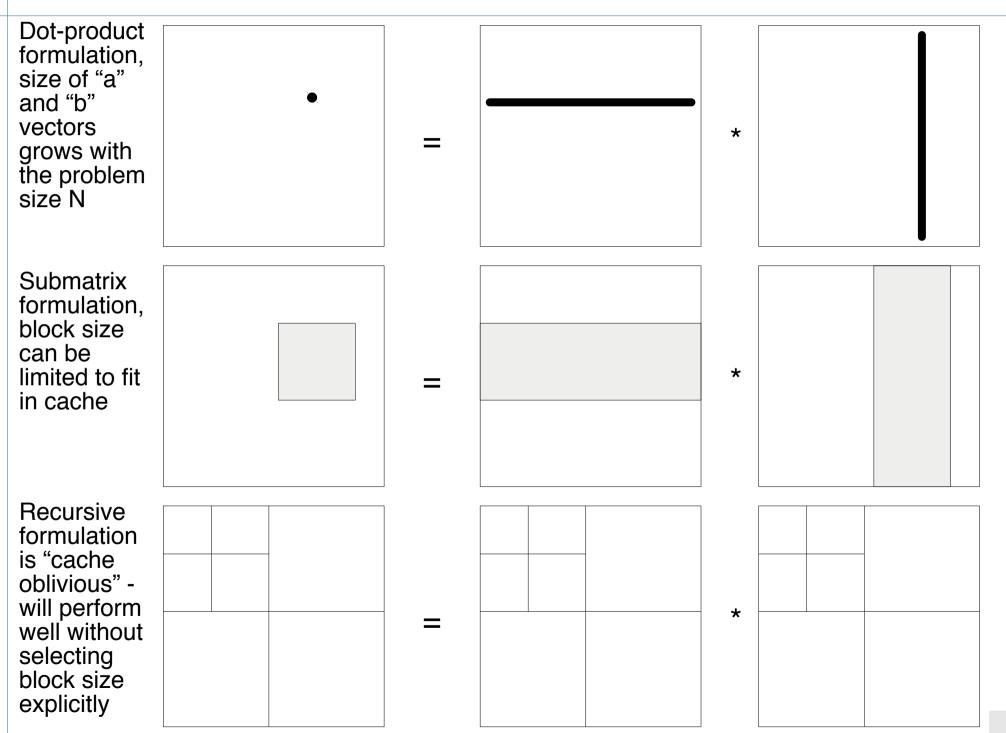


Beware of Sequential Performance



8/10

Element-wise vs. Block-wise vs Recursive



9/10

Amdahl Law: Sequential Performance Matters

- The reference (sequential) performance for computing Amdahl fraction must be optimized
- Slow sequential performance is bad because
 - Gives a false sense of scalability
 - Makes communication look slow compared to computation
 - Creates superlinear scalability when there is none
 - Gives the wrong basis for comparing between different hardware and (sequential/parallel) algorithms
 - My machine is better because scaling is better
 - My algorithm is better because it scales better