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COSC 462

Fast Fourier Transform

Piotr Luszczek
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FFT Applications

● Image processing

– Compression

– Filtering
● Signal analysis

– Compression

– Filtering

– Transformation
● Electronic structure calculation

– 3D FFT
● Deep learning

– Convolutional Neural Networks
● Related problems

– Polynomial multiplication

– Convolutions
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FFT: Continuous Case
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FFT: Continuous and Discrete Formulas
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Computational and Complexity Considerations

● Discrete Fourier Transform and inverse transform is a matrix-
vector multiply (the matrix is symmetric)

– Complexity: Θ(N2)

– Matrix entries come from evaluation of transcendental functions
● Very costly if implemented in software
● Order of magnitude slower than add/multiply if done in hardware

● The transform matrix has a (recursive) structure

– This observation leads to Fast Fourier transform

– Complexity: Θ(N log N)

– Values from transcendental functions can be build incrementally
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Data Transfer Pattern: Butterfly
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Partitioning, Agglomeration, and Mapping
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Remaining Details: Divisibility, Padding, Caches

● Textbooks often deal with input/output vectors as powers of 2

– N = 2m 

– P = 2t 
● Modern memory hierarchy (caches, TLB) and structure (cache

lines, pages, cache associativity) is constructed on powers of 2

– Cache line = 32 or 64

– TLB page = 212 or 220 

– Accessing data in power-of-2 stride is sub-optimal
● Padding to power of 2 is trivial but wastes a lot memory

● Modern libraries include specialized code for other powers

– 2n, 3m, 5k, 7i, 11j, 13x 
● Processors count P has to divide N

● FFT algorithm for prime-number length exists...

– But better performance can be achieved with padding
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