

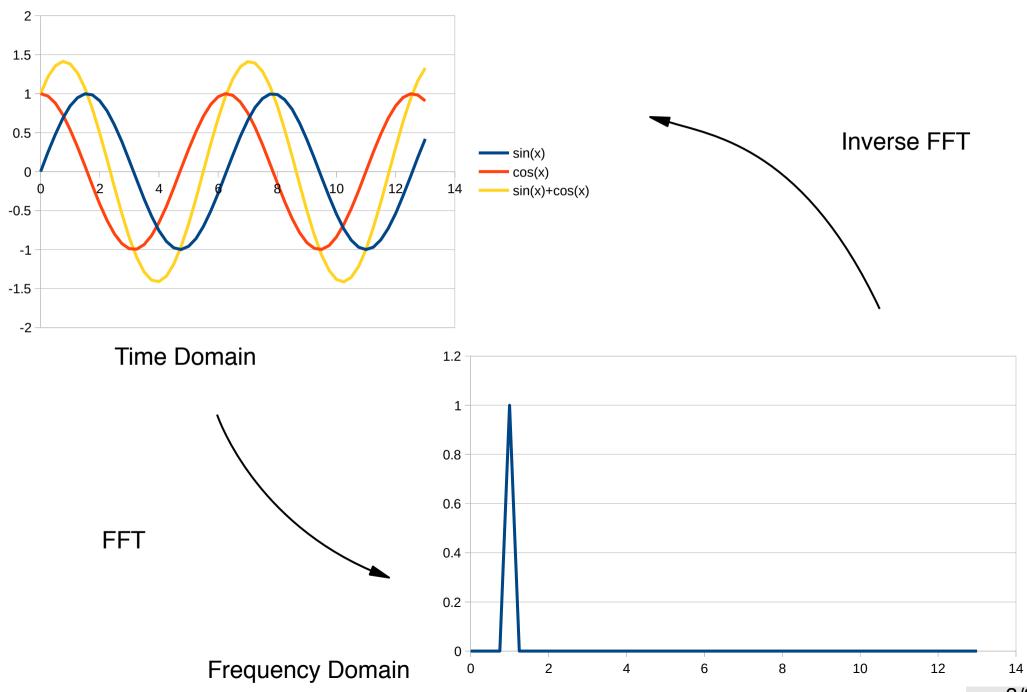
Fast Fourier Transform

Piotr Luszczek

FFT Applications

- Image processing
 - Compression
 - Filtering
- Signal analysis
 - Compression
 - Filtering
 - Transformation
- Electronic structure calculation
 - 3D FFT
- Deep learning
 - Convolutional Neural Networks
- Related problems
 - Polynomial multiplication
 - Convolutions

FFT: Continuous Case



3/8

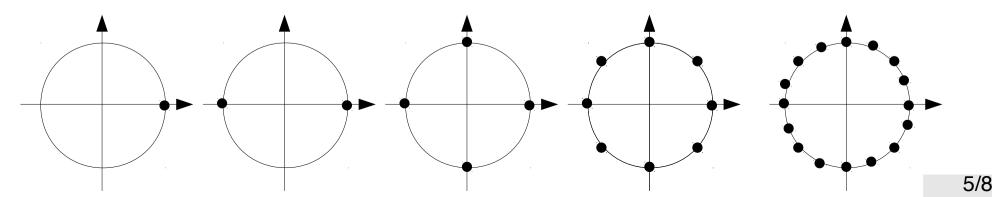
FFT: Continuous and Discrete Formulas

$$F(f) = \int_{-\infty}^{+\infty} f(t) e^{-i2\pi t} dt$$

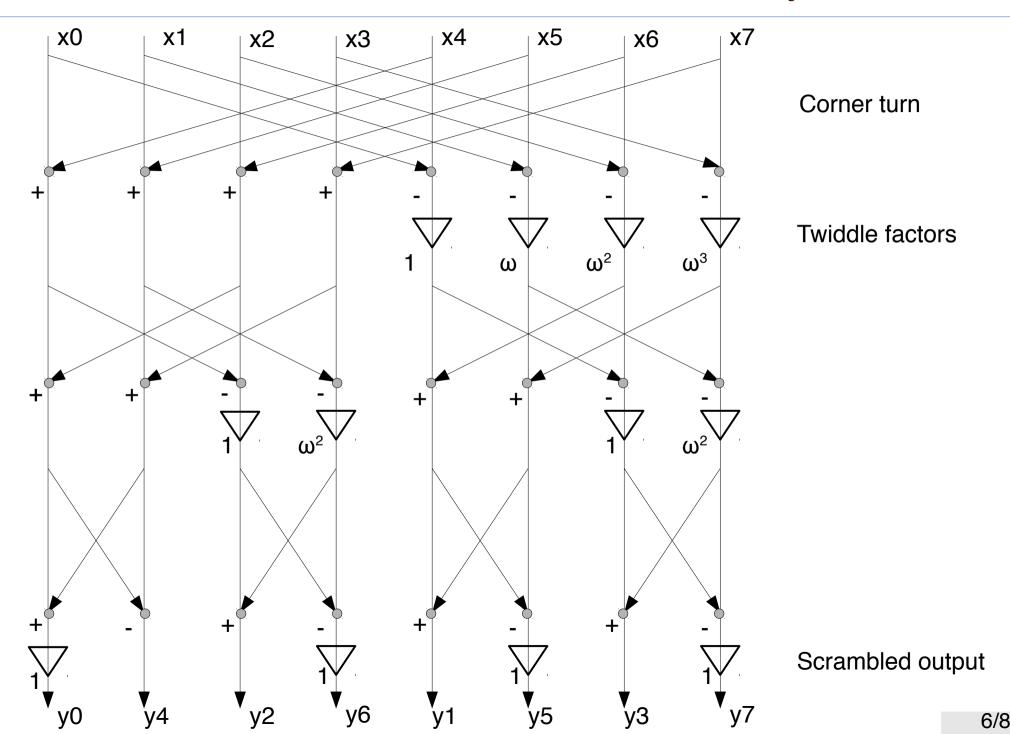
 $y_{k} = \sum_{n=0}^{N-1} x_{n} e^{-i2\pi k n/N} \qquad y = W x = \begin{bmatrix} \omega_{n}^{0 \times 0} & \omega_{n}^{0 \times 1} & \omega_{n}^{0 \times 2} & \cdots \\ \omega_{n}^{1 \times 0} & \omega_{n}^{1 \times 1} & \omega_{n}^{1 \times 2} & \cdots \\ \omega_{n}^{2 \times 0} & \omega_{n}^{2 \times 1} & \omega_{n}^{2 \times 2} & \cdots \end{bmatrix} x$ $x_{n} = \frac{1}{N} \sum_{k=0}^{N-1} y_{k} e^{i2\pi k n/N}$ $\omega_n = e^{i\frac{2\pi}{n}} = \cos\left(\frac{2\pi}{n}\right) + \sin\left(\frac{2\pi}{n}\right)$

Computational and Complexity Considerations

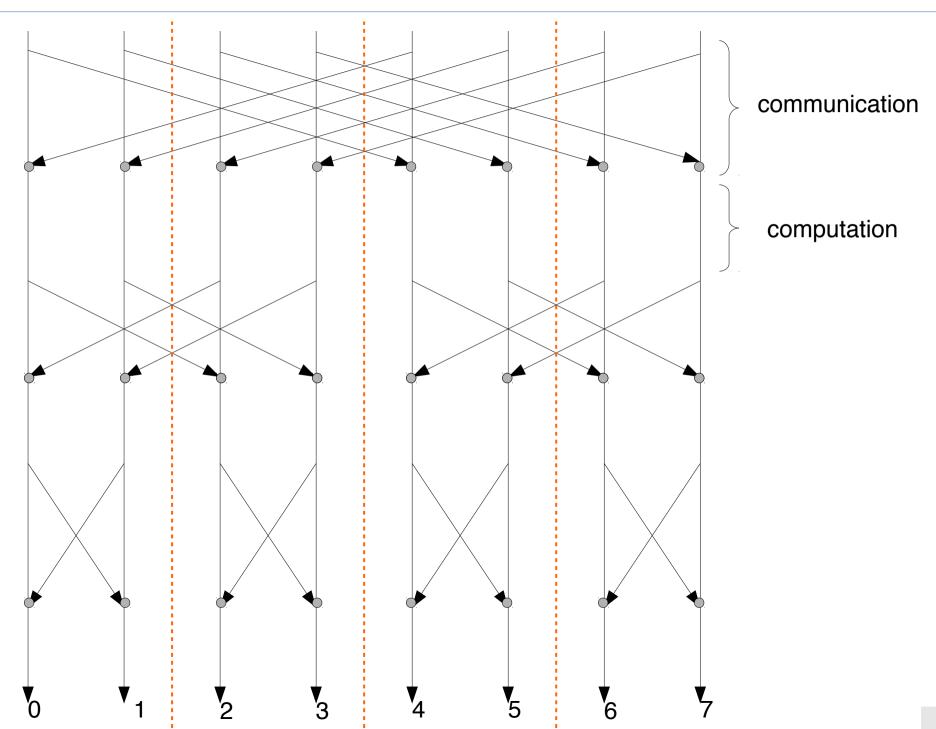
- Discrete Fourier Transform and inverse transform is a matrixvector multiply (the matrix is symmetric)
 - Complexity: $\Theta(N^2)$
 - Matrix entries come from evaluation of transcendental functions
 - Very costly if implemented in software
 - Order of magnitude slower than add/multiply if done in hardware
- The transform matrix has a (recursive) structure
 - This observation leads to Fast Fourier transform
 - Complexity: Θ(N log N)
 - Values from transcendental functions can be build incrementally



Data Transfer Pattern: Butterfly



Partitioning, Agglomeration, and Mapping



7/8

Remaining Details: Divisibility, Padding, Caches

- Textbooks often deal with input/output vectors as powers of 2
 - $N = 2^{m}$
 - $P = 2^{t}$
- Modern memory hierarchy (caches, TLB) and structure (cache lines, pages, cache associativity) is constructed on powers of 2
 - Cache line = 32 or 64
 - TLB page = 2^{12} or 2^{20}
 - Accessing data in power-of-2 stride is sub-optimal
- Padding to power of 2 is trivial but wastes a lot memory
- Modern libraries include specialized code for other powers

 $- 2^{n}, 3^{m}, 5^{k}, 7^{i}, 11^{j}, 13^{x}$

- Processors count P has to divide N
- FFT algorithm for prime-number length exists...
 - But better performance can be achieved with padding