
1/8

COSC 462

Fast Fourier Transform

Piotr Luszczek

2/8

FFT Applications

● Image processing

– Compression

– Filtering
● Signal analysis

– Compression

– Filtering

– Transformation
● Electronic structure calculation

– 3D FFT
● Deep learning

– Convolutional Neural Networks
● Related problems

– Polynomial multiplication

– Convolutions

3/8

FFT: Continuous Case

0 2 4 6 8 10 12 14

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

sin(x)

cos(x)

sin(x)+cos(x)

Time Domain

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

1.2

Frequency Domain

FFT

Inverse FFT

4/8

FFT: Continuous and Discrete Formulas

F (f)=∫−∞

+∞
f (t)e−i 2π t dt

yk=∑
n=0

N−1

xne
−i 2π k n/N

xn=
1
N ∑

k=0

N−1

yk e
i2 π k n /N

y=W x=[ωn
0×0 ωn

0×1 ωn
0×2 ⋯

ωn
1×0 ωn

1×1 ωn
1×2 ⋯

ωn
2×0 ωn

2×1 ωn
2×2 ⋯] x

ℑ

ℜ
ωi1

1

ωn=e
i
2π
n =cos(2π

n)+sin (2π
n)

5/8

Computational and Complexity Considerations

● Discrete Fourier Transform and inverse transform is a matrix-
vector multiply (the matrix is symmetric)

– Complexity: Θ(N2)

– Matrix entries come from evaluation of transcendental functions
● Very costly if implemented in software
● Order of magnitude slower than add/multiply if done in hardware

● The transform matrix has a (recursive) structure

– This observation leads to Fast Fourier transform

– Complexity: Θ(N log N)

– Values from transcendental functions can be build incrementally

6/8

Data Transfer Pattern: Butterfly
x0 x1 x2 x3 x4 x5 x6 x7

- - - -+ + + +

+ + + +- - - -

+ + +

+

+- - - -

1 ω ω2 ω3

1 1ω2 ω2

1 1 1 1

y0 y4 y2 y6 y1 y5 y3 y7

Twiddle factors

Corner turn

Scrambled output

7/8

Partitioning, Agglomeration, and Mapping

0 1 2 3 4 5 6 7

communication

computation

8/8

Remaining Details: Divisibility, Padding, Caches

● Textbooks often deal with input/output vectors as powers of 2

– N = 2m

– P = 2t
● Modern memory hierarchy (caches, TLB) and structure (cache

lines, pages, cache associativity) is constructed on powers of 2

– Cache line = 32 or 64

– TLB page = 212 or 220

– Accessing data in power-of-2 stride is sub-optimal
● Padding to power of 2 is trivial but wastes a lot memory

● Modern libraries include specialized code for other powers

– 2n, 3m, 5k, 7i, 11j, 13x
● Processors count P has to divide N

● FFT algorithm for prime-number length exists...

– But better performance can be achieved with padding

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

