
More	advanced	MPI	and	

mixed	programming	topics



Extracting	messages	from	MPI

• MPI_Recv delivers	each	message	from	a	peer	in	the	
order	in	which	these	messages	were	send
• No	coordination	between	peers	is	possible

0

25

4 3

1

6

1

2

A

4

5

67

8

9

3C
B

• Take	a	scenario	where	we	have	a	ring	of	processors	with	(P-1)	participants,	
and	a	lone	process	that	centralize	messages	from	all	peers.

• Each	processor	(except	0)	waits	for	a	message	from	its	predecessor	in	the	
ring	before	sending	a	message	to	the	coordinator

• In	which	order	the	messages	are	received	at	the	coordinator	?

• How	we	can	implement	this	if	each	ring	participant	send	a	message	of	a	
different	length	?

• What	if	we	assume	a	large	number	of	processes?

• Missing	functionality:	the	capability	to	peek	(but	not	alter)	
into	the	network	to	extract	what	message	will	be	the	next	to	
be	locally	received
• Functionality	that	behaves	as	MPI_Recv but	without	altering	the	
matching	queue



MPI	Probe

• MPI_ANY_SOURCE	and	MPI_ANY_TAG	can	be	used	as	
markers	for	unnamed	receives

• The	usual	usage	scenario	is	probe,	memory	allocation	
and	then	receive
• How	can	we	use	this	functionality	in	a	thread	safe	application	
when	all	threads	work	on	the	same	communicator	?

• Assume	2	threads	(X,Y)	doing	the	probe	(P),	alloc (A)	and	
receive	(R)	operation	each	one	on	its	own	context
• XP⟶XA⟶XR⟶YP⟶YA⟶YR

• What	happens	if	the	order	of	the	operations	is
XP⟶ XA⟶ YP⟶YA⟶YR⟶XR

• The	access	to	the	matching	queue	need	to	be	protected	
for	concurrent	accesses

int MPI_Probe(int source,	int tag,	MPI_Comm comm,	MPI_Status *status);

int MPI_Iprobe(int source,	int tag,	MPI_Comm comm,	int *flag,	 MPI_Status *status);

Int MPI_Get_count(	MPI_Status*	status,	MPI_Datatype datatype,	int*	count);

MPI_Status a	structure	containing	the	fields	MPI_SOURCE,	MPI_TAG	and	MPI_ERROR



Message	Probe

• Functionality	that	extracts	the	message	from	the	
matching	queue	but	without	receiving	it
• Supported	by	functionality	to	extract	the	content	of	the	
message	into	a	user	provided	buffer

• Any	partial	ordering	between	our	threads	X	and	Y	is	now	
correct:	XP’⟶ XA⟶ YP’⟶YA⟶YR’⟶XR’

int MPI_Mprobe(int source,	int tag,	MPI_Comm comm,	 MPI_Message *message,
MPI_Status *status);

int MPI_Improbe(int source,	int tag,	MPI_Comm comm,	 int *flag,	MPI_Message *message,
MPI_Status *status)

int MPI_Mrecv(void	*buf,	int count,	MPI_Datatype type,	 MPI_Message *message,

MPI_Status *status);

int MPI_Imrecv(void	*buf,	int count,	MPI_Datatype type,	 MPI_Message *message,
MPI_Request *request);



Collective	Communication	with	threads

• What	is	happening	if	multiple	threads	issue	in	the	
same	communicator	in	same	time
• Multiple	blocking	collectives	?

• Multiple	non-blocking	collective	with	the	same	datatype	
and	count	?

• Multiple	non-blocking	collective	with	the	different	
datatype	and	count	?



Shared	Memory

• Potential	for	memory	reduction	as	initialization	
data	can	be	shared	between	processes
• Avoid	recomputing the	same	initial	state	by	multiple	
applications	(on	the	same	node)
• POSIX	provides	shared	memory	regions	but	(1)	not	all	
Oses have	support	for	them	and	(2)	it	does	not	integrate	
with	MPI	functionality

• Need	functionality	to	split	a	communicator	in	
disjoint	groups	with	shared	capabilities
• Similar	to	MPI_Comm_split with	architecture	aware	
color	(key	will	then	be	the	rank	in	the	original	
communicator)
• Single	info	key	standardized:	MPI_COMM_TYPE_SHARED
• Some	MPI	implementations	provide	support	for	
different	granularities	of	sharing	(Open	MPI)

int MPI_Comm_split_type(MPI_Comm comm,	int split_type,	int key,	 MPI_Info info,
MPI_Comm *newcomm);



• Allocates	shared	memory	regions	in	win
• Collective	call	resulting	in	a	fully	capable	RMA	window

• Constraint:	all	processes	in	the	communicator	must	be	
capable	of	physically	sharing	memory	(usually	same	
node)

• The	call	returns	a	pointer	to	the	local	part
• The	info	key	define	how	the	global	shared	memory	
region	is	defined:
• Contiguous:	process	i memory	starts	right	after	the	end	of	
process	i-1

• Non	contiguous	(key	alloc_shared_noncontig):	allow	the	MPI	to	
provide	NUMA-aware	optimizations.

• One	way	to	create	the	communicator	needed	is	to	use	
MPI_Comm_split_type

int MPI_Win_allocate_shared (MPI_Aint size,	int disp_unit,	MPI_Info info,	MPI_Comm comm,
void	*baseptr,	MPI_Win *win);

Shared	Memory	Window



Shared	Memory	Window

• In	non	contiguous	cases	we	need	to	extract	the	
remote	address	in	order	to	complete	RMA	
operations
• As	the	memory	region	might	be	mapped	at	different	
addresses	in	different	processes	each	process	local	
address	has	no	meaning
• Unlike	in	Open	SHMEM	where	the	RMA	operations	applied	on	
symmetric	memory	(!)

• Only	works	for	windows	of	type	
MPI_WIN_FLAVOR_SHARED	(aka.	created	via	
MPI_Win_allocate_shared)

int MPI_Win_shared_query (MPI_Win win,	int rank,	MPI_Aint *size,	int *disp_unit,
void	*baseptr);



RMA	and	pt2pt	puzzle	?

for(i = 0; i < len;	a[i] = (double)(10*me+i),	i++);
if	(me	==	0)	{

MPI_Win_lock(MPI_LOCK_EXCLUSIVE,	1,	0,	win);
MPI_Send(NULL,	0,	MPI_BYTE,	2,	1001,	MPI_COMM_WORLD);				
MPI_Get(a,len,MPI_DOUBLE,1,0,len,MPI_DOUBLE,win);

MPI_Win_unlock(1,	win);

for(i = 0; i < len;	i++)	printf(”a[%d]	=	%d\n”,	a[i]);
}	else	if	(me	==	2)	{ /*	this	should	block	till	0	releases	the	lock.	*/

MPI_Recv(NULL,	0,	MPI_BYTE,	0,	1001,	MPI_COMM_WORLD,	MPI_STATUS_IGNORE);
MPI_Win_lock(MPI_LOCK_EXCLUSIVE,	1,	0,	win);	
MPI_Put(a,len,MPI_DOUBLE,1,0,len,MPI_DOUBLE,win);
MPI_Win_unlock(1,	win);

}

• Assuming	a	correctly	initialized	window	what	is	the	
outcome	of	the	following	code	?


