
Advanced	MPI
George	Bosilca



Nonblocking and	collective	communications

• Nonblocking communication
• Prevent	deadlocks	related	to	message	ordering
• Overlapping	communication/computation

• If	communication	progress	is	provided	by	the	
implementation/hardware

• Collective	communication
• Collection	of	pre-defined	routines	for	generalist	
communication	patterns
• Optimized	by	the	implementations

• Nonblocking collective	communication
• Combines	both	advantages
• System	noise/imbalance	resiliency
• Semantic	advantages



Nonblocking communications
• Semantics	are	simple:

• Function	returns	immediately
• No	requirement	for	progress	(more	complicated	than	point-to-
point	communications)

• E.g.:	MPI_Isend(…,	MPI_Request *req);
• Nonblocking tests:

• Test,	Testany,	Testall,	Testsome
• Blocking	wait:

• Wait,	Waitany,	Waitall,	Waitsome
• Blocking	vs.	nonblocking communication

• Mostly	equivalent,	nonblocking has	constant	request	
management	overhead

• Nonblocking may	have	other	non-trivial	overheads



Nonblocking communications
• An	important	technical	detail

• Eager	vs.	Rendezvous

• Most/All	MPIs	switch	protocols
• Small	messages	are	copied	to	internal	remote	buffers

• And	then	copied	to	user	buffer
• Frees	sender	immediately	(cf.	bsend)
• Usually	below	MTU

• Large	messages	divided	in	multiple	pieces
• wait	until	receiver	is	ready	yo prevent	temporary	memory	
allocations	on	the	receiver	due	to	unexpected	communication

• Blocks	sender	until	receiver	arrived

• Hint:	in	many	cases	you	can	tune	these	limits	(for	your	
environment)	and	your	application
• Not	only	for	performance	reasons	but	also	to	minimize	the	
memory	used	by	the	MPI	library	(for	internal	storage)

small eager rest	of	data



Software	Pipelining	- Motivation
if(	0	==	rank	)	{
for(	int i =	0;	i <	MANY;	i++	)	{
buf[i]	=	compute(buf,	size,	i);

}
MPI_Send(buf,	size,	MPI_DOUBLE,	1,	42,	comm );

}	else	{
MPI_Recv(buf,	size,	MPI_DOUBLE,	0,	42,	comm,	&status);
compute(buf,	size);

}

time
Process	0

Process	1

CPU
network

CPU
network

cost



Software	Pipelining	- Implementation
MPI_Request req =	MPI_REQUEST_NULL;
if(	0	==	rank	)	{
for(	int b	=	0;	b	<	(size	/	BSIZE);	b++	)	{
MPI_wait(	req,	&status);		/*	complete	previous	step	*/
for(	int i =	b	*	BSIZE;	i <	((b+1)	*	BSIZE);	i++	)
buf[i]	=	compute(buf,	size,	i);

MPI_Isend(&buf[b	*	BSIZE],	BSIZE,	MPI_DOUBLE,	1,	42,	comm,	&req );
}

}	else	{
for(	int b	=	0;	b	<	(size	/	BSIZE);	b++	)	{
MPI_Recv(&buf[b*BSIZE],	BSIZE,	MPI_DOUBLE,	0,	42,	comm,	&status);
compute(&buf[b*BSIZE],	BSIZE);

}
}

What	if	the	computation	is	more	
expensive	than	the	
communication	?

time
Process	0

Process	1

CPU
network

CPU
network

original	cost



Software	Pipelining	- Implementation
MPI_Request req =	MPI_REQUEST_NULL;
if(	0	==	rank	)	{
for(	int b	=	0;	b	<	(size	/	BSIZE);	b++	)	{
MPI_wait(	req,	&status);		/*	complete	previous	step	*/
for(	int i =	b	*	BSIZE;	i <	((b+1)	*	BSIZE);	i++	)
buf[i]	=	compute(buf,	size,	i);

MPI_Isend(&buf[b	*	BSIZE],	BSIZE,	MPI_DOUBLE,	1,	42,	comm,	&req );
}

}	else	{
for(	int b	=	0;	b	<	(size	/	BSIZE);	b++	)	{
MPI_Recv(&buf[b*BSIZE],	BSIZE,	MPI_DOUBLE,	0,	42,	comm,	&status);
compute(&buf[b*BSIZE],	BSIZE);

}
}

computation	more	expensive	
than	the	communication

time
Process	0

Process	1

CPU
network

CPU
network



Software	Pipelining	- Implementation
MPI_Request req[2]	=	{MPI_REQUEST_NULL};
if(	0	==	rank	)	{
/*	keep	the	same	send	code	*/

}	else	{	idx =	0;
MPI_Irecv(&buf[0*BSIZE],	BSIZE,	MPI_DOUBLE,	0,	42,	comm,	&req[idx]);
for(	int b	=	0;	b	<	(size	/	BSIZE);	b++	)	{
MPI_Wait(&req[idx],	&status);
if(	(b+1)*BSIZE	<	size	)	{	idx =	(idx +	1)	%	2;
MPI_Irecv(&buf[(b+1)*BSIZE],	BSIZE,	…,	comm,	&req[idx]);	}

compute(&buf[b*BSIZE],	BSIZE);
}

}

computation	more	expensive	
than	the	communication

time
Process	0

Process	1

CPU
network

CPU
network



Software	pipelining	- modelization
• No	pipeline
• T	=	Tcomp(s)	+	Tcomm(s)	+	Tstartc(s)	+	T’comp(s)

• Pipeline
• T	=	Tcomp(bs)	+	Tcomm(bs)	+	Tstartc(bs)	+

nblocks *	max(Tcomp(bs),	Tcomm(bs),	Tstartc(bs),	T’comp(bs))

time
Process	0

Process	1

CPU
network

CPU
network



Communicators	- Collectives
• Simple	classification	by	operation	class
• One-To-All (simplex	mode)

• One	process	contributes	to	the	result.	All	processes	receive	the	result.	
• MPI_Bcast
• MPI_Scatter,	MPI_Scatterv

• All-To-One (simplex	mode)
• All	processes	contribute	to	the	result.	One	process	receives	the	result.	

• MPI_Gather,	MPI_Gatherv
• MPI_Reduce

• All-To-All (duplex	mode)
• All	processes	contribute	to	the	result.	All	processes	receive	the	result.	

• MPI_Allgather,	MPI_Allgatherv
• MPI_Alltoall,	MPI_Alltoallv
• MPI_Allreduce,	MPI_Reduce_scatter

• Other
• Collective	operations	that	do	not	fit	into	one	of	the	above	categories.	

• MPI_Scan
• MPI_Barrier

• Common	semantics:
• Blocking	semantics	(return	when	complete)
• Therefore	no	tags	(communicators	can	serve	as	such)
• Not	necessarily	synchronizing	(only	barrier	and	all*)



Collective	Communications
• Most	algorithms	are	log(P)
• They	classify	in	3	major	
communication	patterns
• Scatter,	Gather,	Reduce
• Barrier,	AllReduce,	Allgather,	Alltoall
• Scan,	Exscan



Nonblocking collectives
• Nonblocking variants	of	all	collectives
• MPI_Ibcast(,	MPI_Request *req);

• Semantics:
• Function	returns	no	matter	what
• No	guaranteed	progress	(quality	of	implementation)
• Usual	completion	calls	(wait,	test)	+	mixing
• Out-of order	completion

• Restrictions:
• No	tags,	in-order	matching
• Send	and	vector	buffers	may	not	be	touched	during	
operation
• MPI_Cancel not	supported
• No	matching	with	blocking	collectives



Nonblocking collectives
• Semantic	advantages:

• Enable	asynchronous	progression	(and	manual)
• Software	pipelinling

• Decouple	data	transfer	and	synchronization
• Noise	resiliency!

• Allow	overlapping	communicators
• See	also	neighborhood	collectives

• Multiple	outstanding	operations	at	any	time
• Enables	pipelining	window

• Complex	progression
• MPI’s	global	progress	rule!
• Higher	CPU	overhead	(offloading?)
• Differences	in	asymptotic	behavior

• Collective	time	often
• Computation
• Performance	modeling	(more	complicated	than	for	blocking)
• One	term	often	dominates	and	complicates	overlap



Topologies	and	Neighborhood

• Rank	reordering	(transform	the	original,	resource	manager	
provided	allocation)	and	map	the	processes	on	it	based	on	
the	communication	pattern

Courtesy	to	Torsten Hoefler



MPI	topologies	support

• MPI-1:	Basic	support	Convenience	functions
• Create	and	query	a	graph
• Useful	especially	for	Cartesian	topologies
• Query	neighbors	in	n-dimensional	space
• Non-scalable:	the	graph	knowledge	must	be	global	as	each	
rank	must	specify	the	full	graph

• MPI-2.2:	Scalable	Graph	topology
• Distributed	Graph:	each	rank	specifies	its	neighbors	or	
arbitrary	subset	of	the	graph

• MPI-3.0:	Neighborhood	collectives
• Adding	communication	functions	defined	on	graph	topologies	
(neighborhood	of	distance	one)



Cartesian	topology	creation
• Specify	ndims-dimensional	topology

• Optionally	periodic	in	each	dimension	(Torus)
• Some	processes	may	return	MPI_COMM_NULL

• Product	sum	of	dims	must	be	<=	P
• Reorder	argument	allows	for	topology	mapping

• Each	calling	process	may	have	a	new	rank	in	the	created	
communicator

• Application	must	adapt	to	rank	changing	between	the	old	and	
the	new	communicator,	i.e.	data	must	be	manually	remapped

• MPI	provides	support	for	creating	the	dimensions	array	
(”square”	topologies	via	MPI_Dims_create)
• Non-zero	entries	on	the	dims	array	will	not	be	changed

MPI_Cart_create(MPI_Comm old_comm,
int ndims,	const int*dims,	const int *periods,
int reorder,	MPI_Comm *comm)

MPI_Dims_create(int nnodes,	int ndims,	int *dims)



Graph	Creation
• nnodes is	the	total	number	of	nodes	in	the	graph
• index[i] stores	the	total	number	of	neighbors	for	
the	first	i nodes	(sum)
• Acts	as	offset	into	edges	array

• edges	stores	the	edge	list	for	all	processes
• Edge	list	for	process	j	starts	at	index[j]	in	edges
• Process	j	has	index[j+1]-index[j]	edges

• Each	process	must	know	the	entire	topology
• Not	scalable

MPI_Graph_create(MPI_Comm comm_old,	int nnodes,
const int *index,	const int *edges,	int reorder,
MPI_Comm *comm_graph)



Distributed	graph	creation
• Scalable,	allows	distributed	graph	specification
• Each	nodes	specifies	either	the	local	neighbors	or	any	
edge	in	the	graph	(knowledge	is	now	globally	
distributed)

• Specify	edge	weights
• Optimization	opportunity	for	reordering	despite	the	fact	
that	the	meaning	is	undefined
• Each	edge	must	be	specified	twice,	once	as	out-edge	(at	
the	source)	and	once	as	in-edge	(at	the	dest)

• Info	arguments
• Communicate	assertions	of	semantics	to	the	MPI	library
• E.g.,	semantics	of	edge	weights



Distributed	graph	creation

• n	– number	of	source	nodes
• sources	– n	source	nodes
• degrees	– number	of	edges	for	each	source
• destinations,	weights	– dest.	processor	specification
• info,	reorder	– as	usual
• MPI_Dist_graph_create requires	global	communications	to	redistribute	
the	information	(as	each	process	will	eventually	need	to	know	it’s	
neighbors)

MPI_Dist_graph_create_adjacent(MPI_Comm old_comm
int indegree,	const int sources[],	const int sourceweights[],
int outdegree,	const int destinations[],	const int destweights[],
MPI_Info info,	int reorder,	MPI_Comm *comm_dist_graph)

MPI_Dist_graph_create(MPI_Comm comm_old,	int n,
const int sources[],	const int degrees[],	const int destinations[],
const int weights[],	MPI_Info info,	int reorder,
MPI_Comm*comm_dist_graph)



Example:	distributed	graph	creation
• MPI_Dist_graph_create_adjacent
• MPI_Dist_graph_create

0

1 2

43

indegree

sources

outdegree

destinations

P0 P1 P2 P3 P4
{0}

{}

{2}

{1,	3}

{2}

{0,	4}

{1}

{2}

{3}

{1,	3,	4}

{1}

{3}

{3}

{0,	2,	4}

{1}

{2}

{0}

{}

{3}

{1,	2,	3}

- The	order	is	not	important,	
but	it	must	reflect	on	how	the	
topology	will	be	used	
- Define	the	buffers	order	

in	the	neighborhood	
collectives

- MPI_Dist_graph_create can	be	
any	permutation	of	the	same	
edges	representation



Distributed	Graph	query	functions
• Query	information	(the	number	of	neighbors	and	
the	neighbors)	about	the	calling	process
• MPI_Dist_graph_neighbors_count return	counts	for	the	
indegree,	outdegree and	weight.

MPI_Dist_graph_neighbors_count(MPI_Comm comm,
int *indegree,	int *outdegree,	int *weighted)

MPI_Dist_graph_neighbors(MPI_Comm comm,
int maxindegree,	int sources[],	int sourceweights[],
int maxoutdegree,	int destinations[],int destweights[])

0

1 2

43

indegree

sources

outdegree

destinations

P0 P1 P2 P3 P4
{0}

{}

{2}

{1,	3}

{2}

{0,	4}

{1}

{2}

{3}

{1,	3,	4}

{1}

{3}

{3}

{0,	2,	4}

{1}

{2}

{0}

{}

{3}

{1,	2,	3}

MPI_Dist_graph_neighbors_count MPI_Dist_graph_neighbors



Neighborhood	Collectives
• Collective	communications	over	topologies
• They	are	still	collective (all	processes	in	the	
communicator	must do	the	call,	including	processes	
without	neighbors)
• Buffers	are	accessed	in	the	neighbors	sequence

• Order	is	determined	by	order	of	neighbors	as	returned	by	the	
corresponding	query	functions	([dist_]graph_neighbors).

• Defined	by	order	of	dimensions,	first	negative,	then	positive
• Cartesians	2*ndims sources	and	destinations
• Distributed	graphs	are	directed	and	may	have	different	
numbers	of	send/recv neighbors

• Processes	at	borders	(MPI_PROC_NULL)	leave	holes	in	buffers	
(will	not	be	updated	or	communicated)!

• Every	process	is	root	in	its	own	neighborhood	(!)



MPI_Neighbor_allgather
• Each	process	send	the	same	message	to	all	
neighbors	(the	sendbuf)
• Each	process	receives	indegree messages,	one	from	
each	neighbors	in	their	corresponding	order	from	
the	query	functions
• Similar	to	MPI_gather where	each	process	is	the	
root	on	the	neighborhood
• Despite	the	fact	that	name	starts	with	all

MPI_Neighbor_allgather(
const void*	sendbuf,	int sendcount,	MPI_Datatype sendtype,
void*	recvbuf,	int recvcount,	MPI_Datatype recvtype,
MPI_Comm comm)



MPI_Neighbor_allgather
MPI_Neighbor_allgather(

const void*	sendbuf,	int sendcount,	MPI_Datatype sendtype,
void*	recvbuf,	int recvcount,	MPI_Datatype recvtype,
MPI_Comm comm)

0

1 2

43

0

1 2

43

indegree

sources

outdegree

destinations

P0 P1 P2 P3 P4
{0}

{}

{2}

{1,	3}

{2}

{0,	4}

{1}

{2}

{3}

{1,	3,	4}

{1}

{3}

{3}

{0,	2,	4}

{1}

{2}

{0}

{}

{3}

{1,	2,	3}



Nonblocking versions

• Full	support	for	all	nonblocking neighborhood	
collectives
• Same	collective	invocation	requirement
• Matching	will	be	done	in	order	of	the	collective	post	for	
each	collective
• As	each	communicator	can	only	have	a	single	topology

• Think	about	the	Jacobi	where	the	communications	
are	done	with	neighbor	collectives



One-sided	communications
• In	MPI	we	are	talking	about	epoch:	a	window	of	
memory	updates
• Somewhat	similar	to	memory	transactions
• Everything	in	an	epoch	is	visible	at	once	on	the	remote	peers
• Allow	to	decouple	data	transfers	and	synchronizations

• Terms:
• Origin	process:	Process	with	the	source	buffer,	initiates	the	
operation

• Target	process:	Process	with	the	destination	buffer,	does	not	
explicitly	call	communication	functions

• Epoch:	Virtual	time	where	operations	are	in	flight.	Data	is	
consistent	after	new	epoch	is	started.
• Access	epoch:	rank	acts	as	origin	for	RMA	calls
• Exposure	epoch:	rank	acts	as	target	for	RMA	calls

• Ordering:	only	for	accumulate	operations:	order	of	messages	
between	two	processes	(default:	in	order,	can	be	relaxed)

• Assert:	assertions	about	how	the	one	sided	functions	are	
used,	“fast”	optimization	hints,	cf.	Info	objects	(slower)



Overview

• Window	creation
• Static

• Expose	allocated	memory:	MPI_Win_create
• Allocate	and	expose	memory:	MPI_Win_allocate

• Dynamic
• MPI_Win_create_dynamic

• Communications
• Data	movements:	Put,	Rput,	Get,	Rget
• Accumulate	(acc,	racc,	get_acc,	rget_acc)
• Atomic	operations	(fetch&op,	compare	and	swap)

• Synchronizations
• Active:	Collective	(fence);	Group
• Passive:	P2P	(lock/unlock);	One	epoch	(lock	_all)



Memory	Exposure
• Collective	calls	(attached	to	a	communicator)
• Info

• no_locks – user	asserts	to	not	lock	win	
• accumulate_ordering – comma-separated	rar,	war,	raw,	waw
• accumulate_ops – same_op or	same_op_no_op (default)	–
assert	used	ops	for	related	accumulates

• same_size – if	true,	user	asserts	that	size	is	identical	on	all	
calling	processes	(only	for	MPI_Win_allocate)

• MPI_Win_allocate is	preferred,	as	the	implementation	
is	allowed	to	prepare	the	memory	(pinning	and	co.)
• MPI_Win_free will	free	the	memory	allocated	by	the	
MPI	library	(special	care	for	MPI_Win_allocate)

MPI_Win_create(void	*base,	MPI_Aint size,	int disp_unit,
MPI_Info info,	MPI_Comm comm,	MPI_Win *win)

MPI_Win_allocate(MPI_Aint size,	int disp_unit,	MPI_Info info,
MPI_Comm comm,	void	*baseptr,	MPI_Win *win)

MPI_Win_create_dynamic(MPI_Info info,	MPI_Comm comm,	MPI_Win *win)
MPI_Win_attach(MPI_Win win,	void	*base,	MPI_Aint size)
MPI_Win_detach(MPI_Win win,	const void	*base)

MPI_Win_free(MPI_Win *win)



One	Sided	communications
• Put	and	Get	have	symmetric	behaviors
• Nonblocking,	they	will	complete	at	the	end	of	the	
epoch
• Conflicting	accesses	(for	more	than	one	byte)	are	
allowed,	but	their	outcome	is	undefined
• The	request	based	version	can	be	waited	using	any	MPI	
completion	mechanism	(MPI_Test*	or	MPI_Wait*)
• Similarly	to	MPI_Send completion	of	the	request	only	
has	a	local	meaning
• GET:	the	data	is	stored	in	the	local	buffer
• PUT:	The	local	buffer	can	be	safely	reused	(no	remote	
completion)

MPI_Put(const void	*origin_addr,	int origin_count,	MPI_Datatype origin_datatype,
int target_rank,	MPI_Aint target_disp,	int target_count,	MPI_Datatype target_datatype,
MPI_Win win)

MPI_Rput(…,	MPI_Request *request)



One	Sided	Accumulate
• Atomic	update	of	remote	memory	based	on	a	
combination	of	the	existing	data	and	local	data
• Except	if	OP	is	MPI_REPLACE	(when	it	is	equivalent	to	
MPI_Put)

• Non	overlapping	entries	at	the	target	(because	memory	
consistency	and	ordering	accesses)

• MPI_Get_accumulate similar	behavior	to	fetch_and_*	
operations
• Accumulate	origin into	target,	returns	content	before	
accumulate	in	result

• The	accumulate	operation	is	atomic
• Order	between	operations	can	be	relaxed	with	info	
(accumulate_ordering =	raw,	waw,	rar,	war)	during	
window	creation

MPI_Accumulate(const void	*origin_addr,	int origin_count,	MPI_Datatype origin_datatype,
int target_rank,	MPI_Aint target_disp,	int target_count,	MPI_Datatype target_datatype,
MPI_Op op,	MPI_Win win)

MPI_Get_accumulate(const void	*origin_addr,	int origin_count,	MPI_Datatype origin_datatype,	
void	*result_addr,	int result_count,	MPI_Datatype result_datatype,
int target_rank,	MPI_Aint target_disp,	int target_count,	MPI_Datatype target_datatype,
MPI_Op op,	MPI_Win win)



One	Sided	Atomic	Operations
• Similar	to	the	atomic	operations	on	the	processor
• Fetch_and_op common	use	case	for	single	element
• Supposed	to	be	a	faster	version	of	the	
MPI_Get_accumulate because	of	the	restriction	on	the	
datatype	and	count

• Compare	and	swap
• Compares	compare buffer	with	target and	replaces	
value	at	target with	origin if	compare	and	target	are	
identical.	Original	target	value	is	returned	in	result.

MPI_Fetch_and_op(const void	*origin_addr,	void	*result_addr,	MPI_Datatype datatype,
int target_rank,	MPI_Aint target_disp,	MPI_Op op,	MPI_Win win)

MPI_Compare_and_swap(const void	*origin_addr,	const void	*compare_addr,	void	*result_addr,	
MPI_Datatype datatype,	int target_rank,	MPI_Aint target_disp,	MPI_Win win)



One	Sided	Synchronizations
• Active	/	Passive

• Collective	Synchronization:	all	operations	started	before	
will	complete	by	the	time	we	return
• Ends	the	exposure	epoch	for	the	entire	window
• Optimization	possible	via	the	MPI_MODE_NOPRECEDE	assert	(no	
local	or	remote	operations	with	target	the	local	processor	exists)

• Specification	of	access/exposure	epochs	separately:
• Post:	start	exposure	epoch	to	group,	nonblocking
• Start:	start	access	epoch	to	group,	may	wait	for	post
• Complete:	finish	prev.	access	epoch,	origin	completion	only	(not	
target)

• Wait:	will	wait	for	complete,	completes	at	(active)	target
• As	asynchronous	as	possible

MPI_Win_fence(int assert,	MPI_Win win)

MPI_Win_post(MPI_Group group,	int assert,	MPI_Win win)
MPI_Win_start(MPI_Group group,	int assert,	MPI_Win win)
MPI_Win_complete(MPI_Win win)
MPI_Win_wait(MPI_Win win)



One	Sided	Synchronizations

• Initiates	RMA	access	epoch	to	rank
• No	concept	of	exposure	epoch

• Unlock	closes	access	epoch
• Operations	have	completed	at	origin	and	target

• Type:
• Exclusive:	no	other	process	may	hold	lock	to	rank

• More	like	a	real	lock,	e.g.,	for	local	accesses
• Shared:	other	processes	may	also	hold	lock

• Starts	a	shared	access	epoch	from	origin	to	all	ranks!	
• Not	collective!

• Does	not	really	lock	anything
• Opens	a	different	mode	of	use

MPI_Win_lock(int lock_type,	int rank,	int assert,	MPI_Win win)
MPI_Win_unlock(int rank,	MPI_Win win)

MPI_Win_lock_all(int assert,	MPI_Win win)
MPI_Win_unlock_all(MPI_Win win)


