
Adding	MPI	to	OpenMP
Hybrid	programming:	MPI	+	X



MPI	vs.	OpenMP

• Pure	MPI	Pro:
• Portable	to	distributed	and	shared	
memory	machines

• Scales	beyond	one	node
• No	data	placement	problem
• Explicit	communication

• Pure	MPI	Con:
• Difficult	to	develop	and	debug	
• High	latency,	low	bandwidth	(max	
PCI-x	bus)

• Large	granularity
• Difficult	load	balancing

• Pure	OpenMP Pro:
• Easy	to	implement	parallelism
• Low	latency,	high	bandwidth	(max	
memory	bus)

• Implicit	Communication
• Coarse	and	fine	granularity
• Dynamic	load	balancing

• Pure	OpenMP Con:
• Difficult	to	develop	and	debug	
• Only	on	shared	memory	machines
• Scale	within	one	node
• Possible	data	placement	problem	(on	
NUMA	architectures)

• No	specific	thread	order	



Why	hybrid	programming	?

• Hybrid	MPI+X	paradigm	is	the	software	trend	for	dealing	with	complexities	of	
hybrid	hierarchical	architectures	(such	as	heterogeneous	multi-core	architectures	
prevalent	nowadays).
• Elegant	in	concept	and	architecture:	using	MPI	across	nodes	and	OpenMP within	
nodes.	Good	usage	of	shared	memory	system	resource	(memory,	latency,	and	
bandwidth).
• Avoids	the	extra	communication	overhead	with	MPI	within	node.	Reduce	
memory	footprint.
• OpenMP adds	fine	granularity	(larger	message	sizes)	and	allows	increased	and/or	
dynamic	load	balancing.
• Some	problems	have	two-level	parallelism	naturally.
• Some	problems	could	only	use	restricted	number	of	MPI	tasks.
• Possible	better	scalability	than	both	pure	MPI	and	pure	OpenMP.	



Example	1

int main(int argc,	char*	argv[])	{
MPI_Init(NULL,	NULL);
MPI_Comm_rank(MPI_COMM_WORLD,	&rank);
#pragma	omp parallel	private(omp_rank)
{
omp_rank =	omp_get_thread_num();
printf(”Rank	%d	thread	%d\n”,	rank,	omp_rank);
}
MPI_Finalize();
}

• What	is	the	expected	
outcome	?



Example	1

int main(int argc,	char*	argv[])	{
MPI_Init(NULL,	NULL);
#pragma	omp parallel	private(omp_rank)
{
MPI_Comm_rank(MPI_COMM_WORLD,	&rank);
omp_rank =	omp_get_thread_num();
printf(”Rank	%d	thread	%d\n”,	rank,	omp_rank);
}
MPI_Finalize();
}

• What	is	the	expected	
outcome	?



Initializing	MPI	with	thread	support

• MPI_INIT_THREAD	(required,	&provided,	ierr)
• IN:	required,	desired	level	of	thread	support	(integer).
• OUT:	provided,	provided	level	of	thread	support	(integer).
• Beware:	Returned	provided	maybe	less	than	required.

• Thread	support	levels:
• MPI_THREAD_SINGLE:	Only	one	thread	will	execute.
• MPI_THREAD_FUNNELED:	Process	may	be	multi-threaded,	but	only	master	thread	
will	make	MPI	calls	(all	MPI	calls	are	’’funneled''	to	master	thread)

• MPI_THREAD_SERIALIZED:	Process	may	be	multi-threaded,	multiple	threads	may	
make	MPI	calls,	but	only	one	at	a	time:	MPI	calls	are	not	made	concurrently	from	
two	distinct	threads	(all	MPI	calls	are	’’serialized'').

• MPI_THREAD_MULTIPLE:	Multiple	threads	may	call	MPI,	with	no	restrictions.	

MPI_THREAD_SINGLE <	MPI_THREAD_FUNNELED <	MPI_THREAD_SERIALIZED <	MPI_THREAD_MULTIPLE



OMP	MASTER	calls	MPI

#pragma omp parallel
for(i =	0;	i <	BIG_NUMBER;	i++)
buf[i]	=	I;
#pragma	omp barrier
#pragma omp master
MPI_Send(buf,	…);
#pragma	omp barrier

• The	OMP	master	thread	is	the	thread	that	entered	main
• In	some	OSes	it	might	have	specific	properties	and	behaviors	(signals,	pid,	…)

• MPI_THREAD_FUNNELED	is	required
• Inside	a	parallel	region	there	are	no
implicit synchronizations
• An	explicit	barrier	before	the	MPI	call	is	needed
to	ensure	correctness	of	the	input	data
• An	explicit	barrier	after	the	MPI	call	is	needed
to	ensure	correctness	of	the	output	data
• It	also	implies	that	all	the	other	threads	are
wasting	time



OMP	MASTER	calls	MPI

• The	OMP	master	thread	is	the	thread	that	entered	main
• In	some	OSes	it	might	have	specific	properties	and	behaviors	(signals,	pid,	…)

• MPI_THREAD_FUNNELED	is	required
• Inside	a	parallel	region	there	are	no
implicit synchronizations
• An	explicit	barrier	before	the	MPI	call	is	needed
to	ensure	correctness	of	the	input	data
• An	explicit	barrier	after	the	MPI	call	is	needed
to	ensure	correctness	of	the	output	data
• It	also	implies	that	all	the	other	threads	are
wasting	time

#pragma omp parallel
for(i =	0;	i <	BIG_NUMBER;	i++)
buf[i]	=	I;
#pragma	omp barrier
#pragma omp master
MPI_Send(buf,	…);
#pragma	omp barrier



OMP	SINGLE	calls	MPI

• The	OMP	single	directive	ensure	the	only	one	thread	executes	the	
corresponding	block
• MPI_THREAD_SERIALIZED	is	required
• Inside	a	parallel	region	there	are	no
implicit synchronizations
• An	explicit	barrier	before	the	MPI	call	is	needed
to	ensure	correctness	of	the	input	data
• An	explicit	barrier	after	the	MPI	call	is	needed
to	ensure	correctness	of	the	output	data
• It	also	implies	that	all	the	other	threads	are
wasting	time

#pragma omp parallel
for(i =	0;	i <	BIG_NUMBER;	i++)
buf[i]	=	I;
#pragma	omp barrier
#pragma omp master
MPI_Send(buf,	…);
#pragma	omp barrier



No	pain,	no	gain

• Enforcing	barriers	limit	the	performance
• Removing	the	barriers	depends	on	the	algorithm	and	on	the	other	
implicit	synchronizations	between	parts	of	the	algorithm
• When	was	the	data	updated	?	Outside	the	parallel	section	?
• When	will	be	the	data	used	?	Outside	this	parallel	section	?

• Without	the	barrier	automatic	overlap	between	computations	and	
communications	become	automatic



A	word	(or	two)	about	affinity

• Single	threaded	MPI	applications	rarely	raise	affinity	issues
• Unleashing	multiple	threads	in	the	context	of	the	same	application	is	
a	different	topic:
• Thread	affinity:	floating	vs.	bound

• Memory	issues
• Memory	affinity:	allocate	memory	as	close
as	possible	to	the	core	that	will	use	it	most
• Affinity	is	not	decided	during	the	allocation
• The	default	policy	is	”first	touch”

• Each	MPI	library	has	it’s	own	affinity
settings	(read	the	man/documentation…)



More	words	about	affinity

• Performance	with	and	without	correct
data	initialization
• HWLOC	is	the	tool	to	use	!

#pragma	omp parallel	for
for(	i =	0;	i <	MANY;	i++)	{
a[i]	=	1.0;	b[i]	=	2.0;	c[i]	=	0	}

#pragma	omp parallel	for
For(	i =	0;	i <	MANY;	i++	)	{
c[i]	=	a[i]	*	b[i];
}

Courtesy	Hongzhang Shan



Hybrid	Parallelization	steps

• From	sequential	code,	decompose	with	MPI	first,	then	add	OpenMP
• From	OpenMP code,	treat	as	serial	code.
• From	MPI	code,	add	OpenMP.
• Simplest	and	least	error-prone	way	is	to	use	MPI	outside	parallel	region,	
and	allow	only	master	thread	to	communicate	between	MPI	tasks.	
MPI_THREAD_FUNNELED	is	usually	the	best	choice.
• Keep	in	mind	the	cost	and	implications	of	serializations

• Could	use	MPI	inside	parallel	region	with	thread-safe	MPI.
• MPI_THREAD_MULTIPLE	comes	with	a	performance	cost.	Inside	the	MPI	
library,	thread	synchronizations	might	be	necessary,	and	this	might	show	
on	the	overheads	of	the	MPI	calls.


