
Introduction	to
OpenMP Tasks

COSC	462

Tasks

• Available	starting	with	OpenMP 3.0
• Remember	the	Bernstein	conditions	?	They	define
dependence	relationship	between	all	computational
entities	(including	OpenMP tasks)
• In	this	case	the	dependencies	are	explicitly	declared

• A	task	is	composed	of
• Code	to	be	executed
• Data	environment	(inputs	to	be	used	and	outputs	to	be	generated)
• A	location	where	the	task	will	be	executed	(a	thread)

Iteration
space

S

S E

E

Tasks

• The	tasks	were	initially	implicit	in	OpenMP
• A	parallel construct	constructs	implicit	tasks,	one	per	thread
• Teams	of	threads	are	created	(or	declared)
• Threads	in	teams	are	assigned	to	each	task
• They	synchronize	with	the	master	thread	using	a	barrier	once	all	tasks	are	
completed

• Allowing	the	application	to	explicitly	create	tasks	provide	support	for	
different	execution	models
• More	elastic	as	now	the	threads	have	a	choice	between	multiple	existing	
tasks
• Require	scheduling	strategies	to	be	more	powerful
• Move	away	from	the	original	fork/join	model	of	OpenMP constructs

Technical	Notions
• When	a	thread	encounters	a	task	construct,	it	may	choose	to	execute	
the	task	immediately	or	defer	its	execution	until	a	later	time.	If	
deferred,	the	task	in	placed	in	a	conceptual	pool	of	tasks	associated	
with	the	current	parallel	region.	All	team	threads	will	take	tasks	out	of	
the	pool	and	execute	them	until	the	pool	is	empty.	A	thread	that	
executes	a	task	might	be	different	from	the	thread	that	originally	
encountered	it.
• The	code	associated	with	a	task	construct	will	be	executed	only	once.	
A	task	is tied if	the	code	is	executed	by	the	same	thread	from	
beginning	to	end.	Otherwise,	the	task	is untied (the	code	can	be	
executed	by	more	than	one	thread).

Types	of	tasks

• Undeferred:	the	execution	is	not	deferred	with	respect	to	its	generating	
task	region,	and	the	generating	task	region	is	suspended	until	execution	of	
the	undeferred task	is	completed	(such	as	the	tasks	created	with	the	if
clause)
• Included:	execution	is	sequentially	included	in	the	generating	task	region	
(such	as	a	result	from	a	final clause)
• Subtle	difference:	for	undeferred task,	the	generating	task	region	is	
suspended	until	execution	of	the	undeferred task	is	completed,	even	if	the	
undeferred task	is	not	executed	immediately.
• The	undeferred task	may	be	placed	in	the	conceptual	pool	and	executed	at	a	later	
time	by	the	encountering	thread	or	by	some	other	thread;	in	the	meantime,	the	
generating	task	is	suspended.	Once	the	execution	of	the	undeferred task	is	
completed,	the	generating	task	can	resume.

task	Construct
#pragma	omp task	[clause[,clause]*]
• Clause	can	be

• if	(expression)
• final	(expression)
• untied
• mergeable
• default	(shared	|	firstprivate |	none)
• private	(list)
• firstprivate (list)
• shared	(list)
• depend	(list)
• priority	(value)

task	Construct
#pragma	omp task	[clause[,clause]*]
• Clause	can	be

• depend	(list)
• if	(expression)
• final	(expression)
• untied
• mergeable
• default	(shared	|	firstprivate |	none)
• private	(list)
• firstprivate (list)
• shared	(list)
• priority	(value)

• Enforces	additional	constraints	
between	tasks
• in,	out,	inout,	source,	sink
• The	list	if	depend	contains	storage	
locations	(memory	addresses)	on	
which	the	dependency	will	be	tracked

1

2 3

#pragma	omp task	depend	(out	0xdeadbeef,	0xabdcef00)
task1(…)
#pragma	omp task	depend	(in	0xdeadbeef)
task2(…)
#pragma	omp task	depend	(in	0xabcdef00)

task	Construct
• When	the	if	expression	argument	
evaluate	to	false
• The	task	is	executed	immediately	by	the	
encountering	thread

• Allow	for	user-defined	optimizations
• Example:	a	model	can	be	used	to	predict	the	
cost	of	executing	the	task	and	if	the	cost	is	
too	small	the	cost	of	deferring	the	task	
would	jeopardize	any	possible	benefit

• Allow	to	define	a	critical	path	with	respect	to	
cache	friendliness	and	memory	affinity

#pragma	omp task	[clause[,clause]*]
• Clause	can	be

• depend	(list)
• if	(expression)
• final	(expression)
• untied
• mergeable
• default	(shared	|	firstprivate |	none)
• private	(list)
• firstprivate (list)
• shared	(list)
• priority	(value)

task	Construct
#pragma	omp task	[clause[,clause]*]
• Clause	can	be

• depend	(list)
• if	(expression)
• final	(expression)
• untied
• mergeable
• default	(shared	|	firstprivate |	none)
• private	(list)
• firstprivate (list)
• shared	(list)
• priority	(value)

• When	the	final	expression	evaluates	
to	true	the	task	will	not	have	
descendants	(leaf	in	the	DAG	of	tasks)	
that	will	be	created	in	the	shared	pool	
of	tasks
• Allows	the	runtime	to	stop	generating	
and	deferring	new	tasks	and	instead	
execute	all	future	tasks	from	the	
current	task	directive	directly	in	the	
context	of	the	execution	thread

task	Construct
#pragma	omp task	[clause[,clause]*]
• Clause	can	be

• depend	(list)
• if	(expression)
• final	(expression)
• untied
• mergeable
• default	(shared	|	firstprivate |	none)
• private	(list)
• firstprivate (list)
• shared	(list)
• priority	(value)

• Different	parts	of	the	task	can	be	
executed	by	different	threads.	Implies	
the	tasks	will	yield,	allowing	the	
executing	thread	to	switch	context	
and	execute	another	task	instead.
• If	the	task	is	tied,	it	is	guaranteed	that	
the	same	thread	will	execute	all	the	
parts	of	the	task,	even	if	the	task	
execution	has	been	temporarily	
suspended
• An	untied task	generator	can	be	
moved	from	thread	to	thread	
allowing	the	tasks	to	be	generated	by	
different	entities.

task	Construct
#pragma	omp task	[clause[,clause]*]
• Clause	can	be

• depend	(list)
• if	(expression)
• final	(expression)
• untied
• mergeable
• default	(shared	|	firstprivate |	none)
• private	(list)
• firstprivate (list)
• shared	(list)
• priority	(value)

Amerged task	is	a	task	whose	data	
environment	is	the	same	as	that	of	its	
generating	task	region.	When	
amergeable clause	is	present	on	
a task construct,	then	the	
implementation	may	choose	to	
generate	a	merged	task	instead.	If	a	
merged	task	is	generated,	then	the	
behavior	is	as	though	there	was	no	task	
directive	at	all

task	Construct
#pragma	omp task	[clause[,clause]*]
• Clause	can	be

• depend	(list)
• if	(expression)
• final	(expression)
• untied
• mergeable
• default	(shared	|	firstprivate |	none)
• private	(list)
• firstprivate (list)
• shared	(list)
• priority (value)

• Priority is	a	hint for	the	scheduler.	A	
non-negative	numerical	value,	that	
recommend	a	task	with	a	high	priority	
to	be	executed	before	a	task	with	
lower	priority
• Default defines	the	data-sharing	
attributes	of	variables	that	are	
referenced	
• firstprivate:	each	construct	has	a	copy	of	
the	data	item,	and	it	is	initialized	from	
the	upper	construct	before	the	call

• lastprivate:	each	construct	has	a	non-
initialized	copy,	and	it’s	value	is	updated	
once	the	task	in	completed

• shared:	All	references	to	a	list	item	
within	a	task	refer	to	the	storage	area	of	
the	original	variable	

• private:	each	task	receive	a	new	item

Scheduling

• OpenMP defines	the	following	task	scheduling	points:
• The	point	of	encountering	a	task	construct
• The	point	of	encountering	a	taskwait construct
• The	point	of	encountering	a	taskyield construct
• The	point	of	encountering	an	implicit	or	explicit	barrier
• The	completion	point	of	the	task

• all	explicit	tasks	generated	within	a	parallel	region	are	guaranteed	to	
be	complete	on	exit	from	the	next	implicit	or	explicit	barrier	within	
the	parallel	region

Fibonacci	– task	based	
int fib(int n)	{
int l,	r;

if	(n<2)	return	n;

#pragma	omp task	shared(l)	firstprivate(n)	\
final(n	<=	THRESHOLD)

l	=	fib(n-1);

#pragma	omp task	shared(r)	firstprivate(n)	\
final(n	<=	THRESHOLD)	

r	=	fib(n-2);

#pragma	omp taskwait
return	l+r;
}

int main()	{
int n	=	30;

omp_set_dynamic(0);
omp_set_num_threads(4);

#pragma omp parallel	shared(n)
{
#pragma	omp single
printf ("fib(%d)	=	%d\n",	n,	fib(n));
}

}

• Why	shared and	firstprivate ?
• Why	taskwait ?

Task	generation

#pragma	omp single	{	
#pragma	omp task	untied
for	(i =	0;	i <	ONEZILLION;	i++)	
#pragma	omp task	
process(items[i]);

}	

• Many	tasks	will	be	generated
• At	some	point,	when	the	list	of	
deferred	tasks	is	too	long,	the	
implementation	is	allowed	to	stop	
generating	new	tasks,	and	switches	
every	thread	in	the	team	on	
executing	already	generated	tasks

• If	the	thread	that	generated	the	tasks	
is	executing	a	long	lasting	task,	we	
might	eventually	reach	a	starvation	
scenario	where	the	other	threads	do	
not	have	anything	else	to	execute,	
and	there	is	nobody	to	generate	new	
tasks

• If	the	generator	task	is	untied,	any	
other	thread	in	the	team	can	pick	it	
up,	and	start	generating	new	tasks

Task	generation

#pragma	omp single	{	
#pragma	omp task	untied
for	(i =	0;	i <	ONEZILLION;	i++)	
#pragma	omp task	
process(items[i]);

}	

• Many	tasks	will	be	generated
• At	some	point,	when	the	list	of	
deferred	tasks	is	too	long,	the	
implementation	is	allowed	to	stop	
generating	new	tasks,	and	switches	
every	thread	in	the	team	on	
executing	already	generated	tasks

• If	the	thread	that	generated	the	tasks	
is	executing	a	long	lasting	task,	we	
might	eventually	reach	a	starvation	
scenario	where	the	other	threads	do	
not	have	anything	else	to	execute,	
and	there	is	nobody	to	generate	new	
tasks

• If	the	generator	task	is	untied,	any	
other	thread	in	the	team	can	pick	it	
up,	and	start	generating	new	tasks

