
Laplace�s	equation	– MPI	+	CUDA
• Lets	first	assume	we	don’t	

use	datatypes	(instead	we	

will	manually	pack/unpack)

Data	distribution

Create	datatypes

Exchange	data	with	neighbors

(north,	south,	east,	west)

Do	local	computation

north

south

e
a
st

w
e
st

north

south

e
a
st

w
e
st



Programming	CUDA
• Each	little	box	is	a	light	computational	thread

• Going	back	to	the	data	distribution	methods	(k-cyclic),	

the	CUDA	work	distribution	can	be	assimilated	to	a	<X-

cyclic,	Y-cyclic>	distribution

– The	goal	is	to	evenly	distribute	the	computational	work	over	all	

threads	available	on	the	GPU

– Warp:	a	group	of	32	parallel	threads,	that	executes	exactly the	

same	thing	(but	are	named	distinguishably)

– A	warp	executes	one	common	instruction	at	a	time	(efficiency	

requires	that	all	threads	in	the	warps	do	the	same	thing,	take	the	

same	branches,	do	the	same	operation).

– If	multiple	execution	path	are	possible	(due	to	branches),	if	the	

decision	on	which	branch	to	take	is	not	complete	between	the	

threads	all	of	the	possible	execution	path	are	executed!

• This	also	hint	that	atomic	operations	issued	by	threads	in	a	warp	to	

the	same	memory	location	would	be	executed	sequentially

– occupancy	

• More	info	@	https://docs.nvidia.com/cuda/cuda-c-

programming-guide/

north

south

e
a
st

w
e
st

THREADS_PER_BLOCK_X

T
H
R
E
A
D
S
_
P
E
R
_
B
LO

C
K
_
Y



Debugging

• Commercial	tools	(DDT,	TV,	…)

• If	possibility	to	export	xterm:
mpirun –np	2	xterm –e	gdb –args <my	app	args>

• If	not,	add	a	sleep	(or	a	loop	around	a	sleep	in	
your	applications)	and	use	”gdb –p	<pid>”	to	
attach	to	your	process	(once	connected	to	the	
same	node	where	the	application	is	running)

• gdb can	execute	GDB	commands	from	a	FILE
(with	--command=FILE,	-x	)



Profiling

• Non-CUDA	application:	valgrind (free),	or	

vtune (Intel),	Score-P,	Tau,	Vampir

• CUDA	application:	nvprof from	CUDA



Possible	code	optimizations

• CUDA:
– As	the	computation	is	symmetrical	and	highly	balanced,	one	can	have	

a	different	work	distribution	and	do	more	computations	per	thread

– Use	shared	memory

– Divide	the	computations	in	2	parts:	what	needs	external	data	and	
what	doesn’t.

• MPI:
– Use	datatypes

– Use	RMA

• Overlap communication	and	computations

– Create	a	specialized	kernel	to	pack	and	unpack	all	the	borders	in	one	
operation

– As	starting	a	kernel	has	a	high	latency	merge	this	pack/unpack	kernel	
with	the	updates	based	on	the	ghost	regions


