Laplace s equation — MP| + CUDA

Data distribution e Lets first assume we don’t
use datatypes (instead we
Exchange data with neighbors WI“ manua”y paCk/UnpaCk)

(north, south, east, west)

Do local computation

west

Programming CUDA

e Each little box is a light computational thread
* Going back to the data distribution methods (k-cyclic),

north the CUDA work distribution can be assimilated to a <X-
LT cyclic, Y-cyclic> distribution
o — The goal is to evenly distribute the computational work over all
2 threads available on the GPU
— Warp: a group of 32 parallel threads, that executes exactly the
EREE D e o !
same thing (but are named distinguishably)
south — A warp executes one common instruction at a time (efficiency

requires that all threads in the warps do the same thing, take the
same branches, do the same operation).
THREADS. PER_BLOCK X — If multiple execution path are possible (due to branches), if the

— decision on which branch to take is not complete between the
threads all of the possible execution path are executed!

* This also hint that atomic operations issued by threads in a warp to
the same memory location would be executed sequentially

— occupancy

THREADS_PER_BLOCK_Y

e Moreinfo @ https://docs.nvidia.com/cuda/cuda-c-
programming-guide/

Debugging

Commercial tools (DDT, TV, ...)

If possibility to export xterm:

mpirun —np 2 xterm —e gdb —args <my app args>

If not, add a sleep (or a loop around a sleep in
your applications) and use “gdb —p <pid>" to
attach to your process (once connected to the
same node where the application is running)

gdb can execute GDB commands from a FILE
(with --command=FILE, -x)

Profiling

* Non-CUDA application: valgrind (free), or
vtune (Intel), Score-P, Tau, Vampir

* CUDA application: nvprof from CUDA

Vampir - Trace View - /home/juckel/PIConGPL trace.otf r |
f\f Fle Edt Crat FRer Wndow Hep
- T B
Evkees
Timeine Funcon Summary
0s 10s 20s s 40s 50s s 0s 80s %0s 100s 10s All Processes, Accumuated Exclusive Tme per Function
2008 0s
Frocess 0 ST e vcctoveAndaarkPartcies a
CUDAJ0] 1:2 devicelove AncMark Particles<b0>
CUDA1) 2.1 DeviceDeleteParticles
cuDAZ] 31 1218028 ermeComputeCurr...e0 ParticieTyped>
CUDAT3] 41 18385 VerneComputeCurr.. ¢0 ParticiTypet >
Teead 1 667265 [DeviceAdcParticies -
Process 6 = Furcton Summary
Process 7 L — — Al Processes, Accumisted Exclusive Tme per Function Group
Process 8 : - == |
Process s mmmrppm— e TrTi—— SRS 0% g ASEREL a2
Thread 93) s
e == 1 MP11490.032 8]
Thread 102 o 0
m 1:2 - 0 F
toond 1 CUDA_DLE [580.704 5
B S —————— A_SYNC 1138363 3)
CUDA[D] 132 (1
CUDAY1] 141 ¥ y Contest vew
CUDA[2) 151 0 - Counter Data Timeline B
- -~ -

CUDA[3) 161 = = =
CUDAJ1] 61, CUDA(2) 7-1, CUDA(3] 81, CUDA(D] &2, Values of Metrc “Actwve Threads” over Tme

18y 1 |

25 CUDA(3 81 42

100M | UDA3)

£on | 1, CUDA 81, CUDAD] 82

25M

oM aal °

Mrmum Locations CUDAZ] 7:1, CUDA(1] 6:1, CUDA(3] 8:1 =

Possible code optimizations

* CUDA:

— As the computation is symmetrical and highly balanced, one can have
a different work distribution and do more computations per thread

— Use shared memory

— Divide the computations in 2 parts: what needs external data and
what doesn’t. [(TTT1T]

* MPI:
— Use datatypes
— Use RMA

[(ITTT]
* Overlap communication and computations

— Create a specialized kernel to pack and unpack all the borders in one
operation

— As starting a kernel has a high latency merge this pack/unpack kernel
with the updates based on the ghost regions

