
George	Bosilca
CS462	– Fall	2016

MPI	+	X	programming

https://newton.utk.edu/doc/Documentation/

Rho	Cluster	with	GPGPU
https://newton.utk.edu/doc/Documentation/Systems/RhoCluster

MPI
• Each	programming	

paradigm	only	covers	a	
particular	spectrum	of	the	
hardware	capabilities
– MPI	is	about	moving	data	

between	distributed	
memory	machines

– CUDA	is	about	accessing	
the	sheer	computations	
power	of	a	single	GPU

– OpenMP is	about	taking	
advantage	of	the	
multicores	architectures

• What	is	involved	in	moving	
data	between	2	machines
– Bus	(PCI/PCI-X)
– Memory	(pageable,	

pinned,	virtual)
– OS	(security)

Applications	need	to	fully	take	advantage	of	all	available	
hardware	capabilities	.	It	became	imperative	to	combine	
different	programming	paradigms	together	!	

PCI-X	performance

CUDA

• The	CPU	is	the	main	driver,	it	
launches	kernels	on	the	GPU	
that	perform	computations
sum<<<1,1>>>(2, 3, device_z);
– Data	must	be	moved	between	
main	memory	and	GPU	prior	to	
the	computations

– And	must	be	fetched	back	once	
the	computation	is	completed

– In	general	these	are	explicit	
operations	(cudaMemcpy)

MPI	+	CUDA
• MPI	is	handling	
main	memory	
while	CUDA	
kernels	update	
the	GPU	memory.	
Explicit	memory	
copy	from	the	
device	to	the	CPU	
is	necessary	to	
ensure	
coherence.

if(0	==	rank)	{
cudaMemcpy(buf_host,	buf_dev,	size,	cudaMemcpyDeviceToHost);
MPI_Send(buf_host,	size,	MPI_CHAR,	1,	tag,	MPI_COMM_WORLD);

}	else	{	//	assume	MPI	rank	1
MPI_Recv(buf_host,	size,	MPI_CHAR,	0,	tag,	MPI_COMM_WORLD,	&status);
cudaMemcpy(buf_dev,	buf_host,	size,	cudaMemcpyHostToDevice);

}

Unified	Virtual	Addressing	(UVA)

Devices	have	similar	ranges	of	
memory.
Impossible	to	know	where	a	
memory	range	belongs	to

Devices	have	continuous	ranges	of	
memory	(managed	by	the	
hardware	and	OS).
A	memory	address	clearly	
identifies	the	hardware	device	
hosting	the	memory

UVA:	One	address	space	for	all	CPU	and	GPU	memory
No	need	to	alter	libraries,	they	can	how	identify	on	which	
device	the	memory	is	located

Nvidia GPUDirect

• Allowed	pinned	pages	to	be	shared	between	
different	users
– Ne	need	for	multiple	intermediary	buffers	to	
ready	the	data	to	be	sent	over	the	NiC

CUDA	3.1

Nvidia GPUDirect P2P

• P2P	(Peer-to-Peer)	allows	memory	to	be	
copied	between	devices	on	the	same	node	
without	going	through	the	main	memory.

CUDA	4.0

Nvidia GPUDirect RDMA

• Push	the	data	out	of	the	GPU	directly	into	the	
NiC (or	other	hardware	component).
– Implement	standard	parts	of	the	PCI-X	protocol

CUDA	5.0

MPI	+	CUDA:	integration/awarness

if(0	==	rank)	{
cudaMemcpy(buf_host,	buf_dev,	size,	cudaMemcpyDeviceToHost);
MPI_Send(buf_dev,	size,	MPI_CHAR,	1,	tag,	MPI_COMM_WORLD);

}	else	{	//	assume	MPI	rank	1
MPI_Recv(buf_dev,	size,	MPI_CHAR,	0,	tag,	MPI_COMM_WORLD,	&status);
cudaMemcpy(buf_dev,	buf_host,	size,	cudaMemcpyHostToDevice);

}

• Explicit	memory	
copy	from	the	
device	to	the	CPU	is	
not necessary	to	
ensure	coherence.

• Data	now	flows	
directly	between	
the	local	and	
remote	memory	
(independent	on	
the	location	of	the	
memory).

CUDA-aware	MPI
if(0	==	rank)	{
MPI_Send(buf_dev,	size,	MPI_CHAR,	1,	tag,	MPI_COMM_WORLD);

}	else	{	//	assume	MPI	rank	1
MPI_Recv(buf_dev,	size,	MPI_CHAR,	0,	tag,	MPI_COMM_WORLD,	&status);

}

MVAPICH2 1.8/1.9b
OpenMPI 1.7	(beta)
CRAY MPI	(MPT	5.6.2)
IBM	Platform	MPI (8.3)
SGI	MPI (1.08)

Laplace�s	equation	– MPI	+	CUDA
()n

ji
n
ji

n
i

n
ji

n
ji UUUUU 1,1,1,1
1

, 4
1

+−+−
+ +++=

i,j+1

i,j-1

i+1,ji-1,j

for j = 1 to jmax
for i = 1 to imax
Unew(i,j) = 0.25 * (U(i-1,j) + U(i+1,j)

+ U(i,j-1) + U(i,j+1))
end for

end for

