
Memory	Ordering	Operations

• As	most	of	the	operations	are	not	synchronizing	there	
is	a	need	for	enforcing	ordering
– Basically	a	remote	happen-before	type	of	relationship	
between	code	blocks

– void	shmem_quiet(void):	wait	for	completion	of	all	
outstanding	Put,	AMO	and	store	operation	issues	by	the	PE

– void	shmem_fence(void):	assure	ordering	of	delivery	of	
Put,	AMO	and	store	operations.	All	operation	prior	to	the	
call	to	shmem_fence are	guaranteed	to	be	ordered	to	be	
delivered	before	any	subsequent	Put,	AMO	or	store	
operation.

• Beware:	the	meaning	of	these	synchronizations	are	
purely	local	(i.e.	barriers	are	needed	for	global	scope)

Example
#include	<stdio.h>
#include	<shmem.h>

long	target[10]	=	{0};
int	targ	=	0;
int main(void)
{
long	source[10]	=	{	1,	2,	3,	4,	5,	6,	7,	8,	9,	10	};
int	src	=	99;
start_pes(0);
if	(_my_pe()	==	0)	{
shmem_long_put(target,	source,	10,	1);	/*put1*/
shmem_long_put(target,	source,	10,	2);	/*put2*/
shmem_fence();
shmem_int_put(&targ,	&src,	1,	1);	/*put3*/
shmem_int_put(&targ,	&src,	1,	2);	/*put4*/

}
shmem_barrier_all();	/*	sync sender and receiver */
printf("target[0]	on	PE	%d	is %d\n",	_my_pe(),	target[0]);
return 1;

}

Laplace�s	equation	– OpenSHMEM
()n

ji
n
ji

n
i

n
ji

n
ji UUUUU 1,1,1,1
1

, 4
1

+−+−
+ +++=

i,j+1

i,j-1

i+1,ji-1,j

for j = 1 to jmax
for i = 1 to imax
Unew(i,j) = 0.25 * (U(i-1,j) + U(i+1,j)

+ U(i,j-1) + U(i,j+1))
end for

end for

Laplace�s	equation	– OpenSHMEM
()n

ji
n
ji

n
i

n
ji

n
ji UUUUU 1,1,1,1
1

, 4
1

+−+−
+ +++=

i,j+1

i,j-1

i+1,ji-1,j

for j = 1 to jmax
for i = 1 to imax
Unew(i,j) = 0.25 * (U(i-1,j) + U(i+1,j)

+ U(i,j-1) + U(i,j+1))
end for

end for

• How	to	implement	without	using	
global	barriers	?

• Any	particular	issues	due	to	
synchronizations	?

• How	to	decrease	synchronization	
pressure	?

Atomic	Memory	Operations	(AMO)

• One-sided	mechanism	that	combines	memory	
update	operations	with	atomicity	guarantee

• Two	types	of	AMO	routines:
– Non-fetch:	update	the	remote	memory	in	a	single	
atomic	operation.	No	completion	is	imposed	as	there	
is	no	local	return	value	related	to	the	operation.

– Fetch-and-operate:	combine	memory	update	and	
fetch	operations	in	a	single	atomic	operation.The
routines	return	after	the	data	has	been	fetched	and	
locally	delivered.

AMO:	fetch:	CSWAP

• <type>	shmem_<type>_cswap(<type>*	target,
<type>	cond,	<type>value,	int pe);

– type:	int,	long,	longlong
– The		function	returns	the	old	value	of	*target
– Target:	remotely	accessible	integer	data	object	to	
be	updated

– Cond:	the	value	to	be	compared	with.	If	the	
remote	target	and	the	cond value	are	equal,	then	
value	is	swaped into	the	remote	target.	
Otherwise,	the	remote	target	is	unchanged.

AMO:	fetch:	SWAP

• <type>	shmem_<type>_swap(<type>*	target,
<type>value,	int pe);

– type:	float,	double,	int,	long,	longlong
– The		function	returns	the	old	value	of	*target
– Target:	remotely	accessible	integer	data	object	to	
be	updated

– the	remote	target	is	swaped with	value	into	the	
remote	target

AMO:	fetch:	FINC,	FADD

• <type>	shmem_<type>_finc(<type>	*target,
int pe);

• <type>	shmem_<type>_fadd(<type>	*target,
<type>	value,	int pe);

– Atomic	fetch-and-increment/add	on	the	remote	
data	object	with	1/value

– Returns	the	previous	value	in	*target

AMO:	non-fetch:	INC,	ADD

• void	shmem_<type>_inc(<type>	*target,
int pe);

• void	shmem_<type>_add(<type>	*target,
<type>	value,	int pe);

– Atomic	increment/add	on	the	remote	data	object	
with	1/value

– Returns	…	nothing

Locking	Routines

• Similar	to	mutexes but	for	distributed	settings
– Work	in	First	Come	First	serve	mode

• void	shmem_clear_lock(volatile	long	*lock);	
– Release	the	owned lock

• void	shmem_set_lock(volatile	long	*lock);
– Acquire	the	lock,	blocks	until	the	lock	has	been	
released	by	the	prior	owner	and	succesfully acquired	
by	the	PE

• int shmem_test_lock(volatile	long	*lock);
– Return	1	if	the	lock	is	currently	owned	by	another	PE.	
Otherwise	the	lock	is	acquired	and	the	return	is	0.

Example
#include	<shmem.h>

long	L	=	0;

intmain(int argc,	char	**argv)	{	
intme,	slp =	1;

shmem_init();
me	=	shmem_my_pe();

shmem_barrier_all();

if	(me	==	1)	

sleep	(3);

shmem_set_lock(&L);
printf("%d:	sleeping	%d	second%s...\n",	me,	slp,	slp ==	1	?	""	:	"s");

sleep(slp);
printf("%d:	sleeping...done\n",	me);
shmem_clear_lock(&L);
shmem_barrier_all();
return	0;	}	

