
Non-blocking	RMA	operations

• Add	_nbi (_NBI	in	Fortran)	to	any	PUT	and	GET	
call
– The	transfer	order	is	issued,	but	no	assumptions	
about	the	data	transfers	should	be	made	until	the	
next	shmem_quiet.

– No	order	between	operations	is	enforced	in	the	
absence	of	more	specific	synchronizations	(such	as	
fence).

Remote	Memory	Access

• Put	vs.	Get
– Put	call	completes	when	data	is	“being	sent”
– Get	call	completes	when	data	is	“stored	locally”	

• Cannot	assume	put	data	has	been	transferred	
until	later	synchronization
– Data	still	in	transit	
– Partially	written	at	target
– The	delivery	of	words	in	a	put	operation	can	happen	
in	any	order

• Puts	allow	overlap
– Communicate /	Compute /	Synchronize	

Laplace�s	equation	– OpenSHMEM
()n

ji
n
ji

n
i

n
ji

n
ji UUUUU 1,1,1,1
1

, 4
1

+−+−
+ +++=

i,j+1

i,j-1

i+1,ji-1,j

for j = 1 to jmax
for i = 1 to imax
Unew(i,j) = 0.25 * (U(i-1,j) + U(i+1,j)

+ U(i,j-1) + U(i,j+1))
end for

end for

Laplace�s	equation	– OpenSHMEM
()n

ji
n
ji

n
i

n
ji

n
ji UUUUU 1,1,1,1
1

, 4
1

+−+−
+ +++=

i,j+1

i,j-1

i+1,ji-1,j

for j = 1 to jmax
for i = 1 to imax
Unew(i,j) = 0.25 * (U(i-1,j) + U(i+1,j)

+ U(i,j-1) + U(i,j+1))
end for

end for

• How	to	implement	using	only	PUT	
operations	?

• How	to	implement	using	only	GET	
operations	?

• What	is	the	main	factor	limiting	
performance	?

Collective	Operations:	Barrier_all

• void	shmem_barrier_all(void)
– Barrier	between	all	PE.	All	operations	issued	
before	the	barrier	are	completed	upon	return.

– This	operation	complete	al	remote	
shmem_<type>_add	and	put.

Active	Sets

• What	if	not	all	processes	want	to	be	involved	in	an	
operation	?
– Think	2D	matrices	where	collective

behavior	is	desired	by	line	or	by	column
• It	provides	a	regular	definition	of	a	group	of	processes

– Composed	by	a	tuple
(start,	log	stride[power	of	2],	size)

– PE_start =	0,	logPE_stride =	0,	PE_size =	4
Set:	PE0,	PE1,	PE2,	PE3

– PE_start =	0,	logPE_stride =	1,	PE_size =	4
Set:	PE0,	PE2,	PE4,	PE6

– PE_start =	2,	logPE_stride =	2,	PE_size =	3
Set:	PE2,	PE6,	PE10

– {PEx,	where	x	=	PE_start +	k	*	2	^	logPE_stride,
with	k	=	0	..	PE_size}

0 1
4 5

2 3
6 7

7 8
B C

9 A
D E

Collective	Operations:	Barrier

• void	shmem_barrier(int PE_start,
int logPE_stride,	int PE_size,	long	*pSync)

• Define	a	barrier	on	a	log	(base	2)	group	of	PE

• pSync:	must	be	a	symmetric	array	of	type	long,	that	is	
dedicated	for	the	operation	(of	size	
__SHMEM_BARRIER_SYNC_SIZE).	Upon	entry	it	must	
contain	__SHMEM_SYNC_VALUE.	Upon	return	it	will	
contain	the	same	value.

• pSync is	used	internally	for	coordination	and	should	not	
be	modified	during	the	operation	on	any	PE.

Example:	
Barrier

#include	<stdio.h>
#include	<shmem.h>
long	pSync[_SHMEM_BARRIER_SYNC_SIZE];
int x	=	10101;

int main(void)
{
int me,	npes;
for	(int i	=	0;	

i	<	_SHMEM_BARRIER_SYNC_SIZE;	i	+=	1)	{
pSync[i]	=	_SHMEM_SYNC_VALUE;

}
start_pes(0);
me	=	_my_pe();
npes =	_num_pes();
if(me	%	2	==	0)	{
x	=	1000	+	me;
/*put	to	next even PE	in	a	circular fashion*/
shmem_int_p(&x,	4,	me+2%npes);
/*synchronize all	even pes*/
shmem_barrier(0,	1,	(npes/2	+	npes%2),	pSync);

}
printf("%d:	x	=	%d\n",	me,	x);
return	0;

}

Collective	Operations:	Broadcast

• void	shmem_broadcastXX(void	*target,
const void	*source,	size_t nlong,
int PE_root,	int PE_start,	int logPE_stride,
int PE_size,	long	*pSync);

– XX can	be	32	or	64
– Similar	concept	to	MPI_Bcast:	broadcast	a	block	of	
data	from	one	PE	to	others	PE

– The	participants	group	is	defined	bu the	PE_root,	
PE_start,	logPE_stride and	PE_size.

– The	PE_root is	a	zero-based	ordinal	with	respect	to	
the	active	set	of	participants

– pSync should	follow	the	same	rules	as	for	the	barrier

Collective	Operations:	Reductions

• void	shmem_<type>_<op>_to_all(
<type>	*dest,	<type>*source,	int nreduce,
int PE_start,	int logPE_stride,	int PE_size,
<type>*pWrk,	long	*pSync);
– Type	might	be:	short,	int,	long,	longlong,	float,	
double

– Op	might	be:	and,	or,	xor,	max,	min,	sum,	prod
– Dest and	source	must	not	overlap
– pWrk must	be	a	symmetric	array	of	the	same	size	
as	dest

Collective	Operations:	Gather

• void	shmem_collectXX(void	*target,
const void	*source,	size_t nelems,
int PE_start,	int logPE_stride,	int PE_size,
long	*pSync);

– In	C	XX might	be	32	or	64	(In	fortran 4,	8,	16,	32,	64)
• Concatenates	blocks	of	data	from	multiple	PEs	to	an	array	in	every	

PE	(similar	to	MPI_Allgather)
• The	group	of	participants	is	defined	by	the	PE_start,	logPE_stride

and	PE_size
• The	data	is	concatenated	based	on	the	PE	index	in	the	active	set
• 2 versions	depending	if	the	number	of	elements	is	the	same	on	all	

PE	(shmem_fcollectXX)	or	if	they	are	different	(shmem_collectXX)

Collective	Operations:	AlltoAll

• void	shmem_alltoallXX(void	*dest,
const void	*source,	size_t nelems,
int PE_start,	int logPE_stride,	int PE_size,
long	*pSync);

– In	C	XX might	be	32	or	64	(same	in	Fortran)

• each	PE	exchanges	a	fixed	amount	of	data	with	all	other	PEs	in	the	Active	
set	(similar	to	MPI_Alltoall)

• The	group	of	participants	is	defined	by	the	PE_start,	logPE_stride and	
PE_size

• The	data	is	concatenated	based	on	the	PE	index	in	the	active	set

• A	strided version	exists	(shmem_alltoallsXX)	where	you	can	specify	a	
stride	for	both	the	source	and	dest buffers	(basically	a	vector	of	length	1	
with	a	specified	stride)

Point-to-point	synchronizations

• void	shmem_<type>_wait(<type>	*var,
int value);

void	shmem_<type>_wait_until(<type>	*var,
int cond,	int value);

• Blocking	function	waiting	until	the	condition	
on	the	*var is	true	with	respect	to	the	value

• The	condition	can	be:	equal,	not	equal,	
greater	than,	less	or	equal	than,	less	than,	
greater	or	equal	to

Example
#include	<shmem.h>	
#define	GREEN	1
#define	RED	0

int light=RED;

int main(int argc,	char	**argv)	{
int me;	start_pes(0);
me=	_my_pe();
if(me	==	0)	{

printf("me:%d.	Stop	on	Red	Light\n",	me);
shmem_int_wait(&light,	RED);	/*	Is	the	light	still	red?	*/
printf("me:%d.	Now	I	may	proceed\n",	me);

}	else	if(me	==	1){

sleep(10);
light=GREEN;
printf("me:%d.	I've	turn	light	to	green.\n",	me);
shmem_int_put(&light,	&light,	1,	0);	}	

return	0;
}	

Output:
me:0.	Stop	on	Red	Light
me:1.	I've	turned	light	to	green
me:0.	Now	I	may	proceed	

Memory	Ordering	Operations

• As	most	of	the	operations	are	not	synchronizing	there	
is	a	need	for	enforcing	ordering
– Basically	a	remote	happen-before	type	of	relationship	
between	code	blocks

– void	shmem_quiet(void):	wait	for	completion	of	all	
outstanding	Put,	AMO	and	store	operation	issues	by	the	PE

– void	shmem_fence(void):	assure	ordering	of	delivery	of	
Put,	AMO	and	store	operations.	All	operation	prior	to	the	
call	to	shmem_fence are	guaranteed	to	be	ordered	to	be	
delivered	before	any	subsequent	Put,	AMO	or	store	
operation.

• Beware:	the	meaning	of	these	synchronizations	are	
purely	local	(i.e.	barriers	are	needed	for	global	scope)

Example
#include	<stdio.h>
#include	<shmem.h>

long	target[10]	=	{0};
int	targ	=	0;
int main(void)
{
long	source[10]	=	{	1,	2,	3,	4,	5,	6,	7,	8,	9,	10	};
int	src	=	99;
start_pes(0);
if	(_my_pe()	==	0)	{
shmem_long_put(target,	source,	10,	1);	/*put1*/
shmem_long_put(target,	source,	10,	2);	/*put2*/
shmem_fence();
shmem_int_put(&targ,	&src,	1,	1);	/*put3*/
shmem_int_put(&targ,	&src,	1,	2);	/*put4*/

}
shmem_barrier_all();	/*	sync sender and receiver */
printf("target[0]	on	PE	%d	is %d\n",	_my_pe(),	target[0]);
return 1;

}

Laplace�s	equation	– OpenSHMEM
()n

ji
n
ji

n
i

n
ji

n
ji UUUUU 1,1,1,1
1

, 4
1

+−+−
+ +++=

i,j+1

i,j-1

i+1,ji-1,j

for j = 1 to jmax
for i = 1 to imax
Unew(i,j) = 0.25 * (U(i-1,j) + U(i+1,j)

+ U(i,j-1) + U(i,j+1))
end for

end for

Laplace�s	equation	– OpenSHMEM
()n

ji
n
ji

n
i

n
ji

n
ji UUUUU 1,1,1,1
1

, 4
1

+−+−
+ +++=

i,j+1

i,j-1

i+1,ji-1,j

for j = 1 to jmax
for i = 1 to imax
Unew(i,j) = 0.25 * (U(i-1,j) + U(i+1,j)

+ U(i,j-1) + U(i,j+1))
end for

end for

• How	to	implement	using	only	PUT	
operations	?

• How	to	implement	using	only	GET	
operations	?

• What	is	the	main	factor	limiting	
performance	?

