
George	Bosilca

CS462	– Fall	2016

http://www.openshmem.org/site/

Parallel	Programming	Models

• What	exactly	means	parallel:	An	extension	to	
concurrency where	things	happens	on	different	
locations	(processors)

• One	simple	way	to	differentiate	programming	models	
is	by	their	address	space:	global vs.	distributed
– Global:	the	address	space	is	reachable	by	every	process	
(think	threading	or	OpenMP)

– Distributed:	each	process	address	space	is	private,	access	
only	goes	through	specialized	API	(MPI)

– Middle	ground:	partitioned	global	address	(PGAS	
descendants)	where	some	parts	are	private	and	some	
shared

The	PGAS	family

– Libraries:	GASNet,	ARMCI	/	Global	Arrays,	
GASPI/GPI,	OpenSHMEM

– Languages:	Chapel,	Titanuim,	X10,	UPC,	CoArray
Fortran

Program	
in	given	
language

Compiler	for	given	
language

binary

Program	
using	

library	API
Compiler binary

Library	
implementation

La
ng
ua
ge

Li
br
ar
y

PGAS Languages vs Libraries

Languages(Libraries(

O"en%more%concise% More%informa/on%redundancy%in%program%

Requires%compiler%support% Generally%not%dependent%on%a%par/cular%
compiler%

More%compiler%op/miza/on%opportuni/es% Library%calls%are%a%"black%box"%to%compiler,%
typically%inhibi/ng%op/miza/on%

User%may%have%less%control%over%
performance%

O"en%usable%from%many%different%
languages%through%bindings%

Examples:%UPC,%CAF,%Titanium,%Chapel,%
X10%

Examples:%OpenSHMEM,%Global%Arrays,%
MPIQ3%

Courtesy	Dr.	Barbara	Chapman

PGAS

• Execution	entities	share	a	common	shared	
memory	region	distributed	among	all	
participants

Shared

Context	0

Private	0

Context	1

Private	1

Context	N-1

Private	N-1

Unified	Parallel	C	(UPC)

• Language	defines	a	“physical”	association	
between	execution	contexts	(UPC	threads)	and	
shared	data	items	called	“affinity”
– Scalars	data	is	affine	with	execution	context	0
– Standard	data	distribution	concepts	applies:	cyclic,	
block	and	block-cyclic

• All	interactions	with	shared	data	explicitly	
managed	by	the	application	developer.
– UPC	provides	a	toolbox	of	basic	primitives:	locks,	
barriers,	fences.

• Load	balancing	is	done	using	the	forall concept

CoArray Fortran

• SPMD-like:	multiple	images,	each	with	it’s	own	index	
(similar	to	rank	in	MPI),	exists

• Each	image	execute	independently	of	the	others	…	but	
the	same	program

• Synchronizations	between	images	is	explicit
• An	“object”	(data)	has	the	same	name	in	all	images
• An	image	can	only	work	in	local	data
• An	image	moves	remote	data	to	local	data,	using	
explicit	CAF	syntax.

• No	data	movement	outside	this	concept	is	allowed.

Symmetrical	Hierarchical	MEMory

• SPMD	application	developed	in	C,	C++	and	Fortran
• Similar	to	CAF:	programs	perform	computations	in	
their	own	address	space	but
– Explicitly	communicate	data	and	synchronize	with	the	
other	processes

• A	process	participating	in	SHMEM	applications	are	
called	processing	elements	(PE)

• SHMEM	provides	remote	one-sided	data	transfer,	some	
basic	collective	concepts	(broadcast	and	reduction),	
specialized	synchronizations	and	atomic	memory	
operation	(remote	memory)

History	of	SHMEM

• Originator:	similar	time-frame	as	MPI
– SHMEM	in	1993	by	Cray	Research	(for	Cray	T3D)
– SGI	incorporated	Cray	SHMEM	in	their	Message	Passing	Toolkit	

(MPT)
– Quadrics	optimized	it	for	QsNet.	First	come	to	the	Linux	world
– Many	others:	GSHMEM,	University	of	Florida;	HP,	IBM,	

GPSHMEM	(ARMCI).
• Unlike	MPI,	SHMEM	was	not	defined	by	a	standard.	A	loose	

API	was	used	instead..
– In	other	words,	while	all	implementations	manipulated	similar	

concepts	they	were	all	different.
– A	push	for	standardization	was	necessary	(OpenSHMEM)

OpenSHMEM

• An	effort	to	create	a	standardized	SHMEM	
library	API	with	a	[clear]	well-defined	behavior

• SGI	SHMEM	API	is	the	baseline	for	
OpenSHMEM 1.0

• A	forum	to	discuss	and	extend	the	SHMEM	
standard	with	critical	new	capabilities
– http://openshmem.org/site/
– As	of	September	2016	the	Open	SHMEM	standard	
reached	version	1.3	

Everything	evolves	around

• Remote	Direct	Memory	Access	(RDMA)
– RDMA	allows	one	PE	to	access	certain	variables	of	

another	PE	without	interrupting	the	other	PE
– These	data	transfers	are	completely	asynchronous
– They	can	take	advantage	of	hardware	support

• Terminology
– PE:	processing	element,	a	numbered	process
– Origin:	process	that	performs	the	call
– Remote_pe:	process	on	each	the	memory	is	accessed
– Source:	array	which	the	data	is	copied	from
– Target:	array	which	the	data	is	copied	to

• The	key	concept	here	is	the	symmetric	variables
– Force	the	applications	to	be	SPMD

Symmetric	Variables

• Scalars	or	arrays	that	exists	with	the	same	size,	type,	
and	relative	address	on	all	PEs.

• They	can	either	be
– Global	(static	variables,	or	local	variables)
– Dynamically	allocated	and	maintained	by	the	SHMEM	
library

• With	little	help	from	the	Operating	System,	the	
following	types	of	objects	can	be	made	symmetric:
– Fortran	data	objects:	common	blocks	and	SAVE	attributes
– Non-stack	C	and	C++	variables
– Fortran	arrays	allocated	with	shpalloc
– C	and	C++	data	allocated	by	shmalloc

Example	(dynamic	allocation)

int main	(void)	
{	
int *x;	
…	
start_pes(4);	
…	
x	=	(int*)	shmalloc(sizeof(x));	
…	
shmem_barrier_all();	
…	
shfree(x);	
return	0;	

}	

x

PE	0

x

PE	1

x

PE	2

x

PE	3

OpenSHMEM primitives

• Initialization	and	Query
• Symmetric	Data	Management
• Data	transfers:	puts	and	gets	(RDMA)
• Synchronization:	barrier,	fence,	quiet
• Collective:	broadcast,	collection	(allgather),	reduction
• Atomic	Memory	Operations

– Mutual	Exclusion
– Swap,	add,	increment,	fetch

• Distributed	Locks
– Set,	free	and	query

• Accessibility	Query	Routines
– PE	accessible,	Data	accessible

Main	Concept

• As	the	data	transfers	are	one-sided,	it	is	
difficult	to	maintain	a	consistent	view	of	the	
state	of	the	parallel	application
– Only	local	completion	is	known,	and	only	in	some	
cases

– Example:	put	operation

• Synchronization	primitives	should	be	used	to	
enforce	completion	of	communication	steps

Initialization	and	Query

• void	start_pes(int npes);	
• int shmem_my_pe(void);	
• int shmem_n_pes(void);	
• int shmem_pe_accessible(int pe);	
• int shmem_addr_accessible(void	*addr,	int pe);	
• void	*shmem_ptr(void	*target,	int pe);	
– Only	if	the	target	process	is	running	from	the	same	
executable	(symmetry	of	the	global	variables)	

Your	first	OpenSHMEM application

#include	<stdio.h>	
#include	<shmem.h>	/*	The	shmem header	file	*/	
int
main	(int argc,	char	*argv[])	
{
int nprocs,	me;	
start_pes (4);	
nprocs =	shmem_n_pes ();	me	=	shmem_my_pe ();	
printf ("Hello	from	%d	of	%d\n",	me,	nprocs);	return	0;	

}	

Hello	from	0	of	4
Hello	from	2	of	4	
Hello	from	3	of	4	
Hello	from	1	of	4	

Symmetric	Data	Management

• Allocate	symmetric,	remotely	accessible	blocks	(the	call	
are	extremely	similar	to	their	POSIX	counterpart)
– void	*shmalloc(size_t size);
– void	shfree(void	*ptr);
– void	*shrealloc(void	*ptr,	size_t size);
– void	*shmemalign(size_t alignment,	size_t size);
– extern	long	malloc_error;

• These	calls	are	collective,	which	means	all	processes	
involved	in	the	execution	must make	them
– This	is	a	simple	way	to	ensure	the	symmetry	of	all	
dynamically	allocated	variables

Remote	Memory	Access	- PUT

• void	shmem_<type>_p(<type>*	target,
<type>	value,	int pe);

void	shmem_<type>_put(<type>*	target,
const <type>	*source,	size_t len,	int pe);

• Type can	be:	floating	point	[double,	float],	integer	[short,	
int,	long,	longdouble,	longlong]

• void	shmem_putXX(void	*target,
const void	*source,	size_t len,	int pe);

• XX can	be:	32,	64,	128
• void	shmem_putmem(void	*target,

const void	*source,	size_t len,	int pe);
– Byte	level	function

Remote	Memory	Access	- PUT

• Moves	data	from	local	memory	to	remote	
memory:
– Target:	remotely	accessible	object	where	the	data	will	
be	moved

– Source:	local	data	object	containing	the	data	to	be	
copied

– Len:	number	of	elements	in	the	source	(and	target)	
array.	The	type	of	elements	(from	the	function	name)	
will	decide	how	much	data	will	be	transferred

– Pe:	the	target	PE	for	the	operation
• If	there	is	only	one	data	to	copy	there	is	an	alias	
shmem_<type>_p

Example	- PUT
..	

long	source[10]	=	{	1,	2,	3,	4,	5,	6,	7,	8,	9,	10	};	

static	long	target[10];	

start_pes(2);	

if	(_my_pe()	==	0)	{	

/*	put	10	words	into	target	on	PE	1	*/	

shmem_long_put(target,	source,	10,	1);	

}	

shmem_barrier_all();	/*	sync	sender	and	receiver	*/	

if	(_my_pe()	==	1)	{	

for(i =	0;	i <	10;	i++)	

printf("target[i]	on	PE	%d	is	%d\n",	i,	_my_pe(),	target[i]);	

}	

…	

Without	synchronization	
the	target	PE	does	not	
know	when	the	data	is	
available

Target	should	be	in	a	
symmetric	memory

No	assumption	about	the	
order	of	operations	should	
be	made

Remote	Memory	Access	- IPUT

• void	shmem_<TYPE>_iput(<TYPE>	*target,
const <TYPE>	*source,	ptrdiff_t tstride,
ptrdiff_t sstride,	size_t nelems,	int pe);

• Same	idea	as	PUT	plus

– tstride:	the	stride	between	elements	on	the	target	
array

– sstride:	the	stride	between	elements	on	the	
source	array

0 1 2 3 4

source

sstride

0 1 2 3

target

tstride

4

Remote	Memory	Access	- GET

• <type>	shmem_<type>_g(<type>*	target, int pe);
void	shmem_<type>_get(<type>*	target,

const <type>	*source,	size_t len,	int pe);

• Type can	be:	floating	point	[double,	float],	integer	
[short,	int,	long,	longdouble,	longlong]

• void	shmem_getXX(void	*target,
const void	*source,	size_t len,	int pe);

• XX can	be:	32,	64,	128
• void	shmem_getmem(void	*target,

const void	*source,	size_t len,	int pe);
– Byte	level	function

Remote	Memory	Access	- GET

• Moves	data	from	remote	memory	to	local	
memory:
– Target:	local	data	object	containing	the	data	to	be	
copied

– Source:	remotely	accessible	object	where	the	data	will	
be	moved

– Len:	number	of	elements	in	the	source	(and	target)	
array.	The	type	of	elements	(from	the	function	name)	
will	decide	how	much	data	will	be	transferred

– Pe:	the	source	PE	for	the	operation
• If	there	is	only	one	data	to	copy	there	is	an	alias	
shmem_<type>_g

Example	- GET
..	

long	source;	

static	long	target[10];	

start_pes(2);	

source	=	_my_pe();

if	(_my_pe()	==	0)	{	

/*	get	1	words	from	each	target	PE	*/

for(t	=	0;	t	<		_num_pe();	t++)

shmem_long_get(target	+	t,	&source,	1,	t);	

}	

shmem_barrier_all();	/*	sync	sender	and	receiver	*/	

if	(_my_pe()	==	0)	{	

for(i =	0;	I	<	_num_pe();	i++)	

printf("target[%d]	on	PE	%d	is	%d\n",	i,	target[i],	target[i]);	

}	

…	

No	need	for	
synchronization	after	the	
call.	The	call	is	blocking	it	
returns	once	the	operation	
is	completed

Target	should	be	in	a	
symmetric	memory

Consecutive	gets	
complete	in	order

..	

long	source;	

static	long	target[10];	

start_pes(2);	

source	=	_my_pe();

if	(_my_pe()	==	0)	{	

/*	get	1	words	from	each	target	PE	*/

for(t	=	0;	t	<		_num_pe();	t++)

shmem_long_get(target	+	t,	&source,	1,	t);	

}	

shmem_barrier_all();	/*	sync	sender	and	receiver	*/	

if	(_my_pe()	==	0)	{	

for(i =	0;	I	<	_num_pe();	i++)	

printf("target[%d]	on	PE	%d	is	%d\n",	i,	target[i],	target[i]);	

}	

…	

Example	- GET

Example	- GET
..	

long	source;	

static	long	target[10];	

start_pes(2);	

source	=	_my_pe();

shmem_barrier_all();	/*	sync	sender	and	receiver	*/	

if	(_my_pe()	==	0)	{	

/*	get	1	words	from	each	target	PE	*/

for(t	=	0;	t	<		_num_pe();	t++)

shmem_long_get(target	+	t,	&source,	1,	t);	

}	

shmem_barrier_all();	/*	sync	sender	and	receiver	*/	

if	(_my_pe()	==	0)	{	

for(i =	0;	I	<	_num_pe();	i++)	

printf("target[%d]	on	PE	%d	is	%d\n",	i,	target[i],	target[i]);	

}	

…	

We	need	

This	barrier	is	needed	to	
ensure	proper	initialization	
for	source	on	all	Pes.

Remote	Memory	Access	- IGET

• void	shmem_<TYPE>_iget(<TYPE>	*target,	const
<TYPE>	*source,	ptrdiff_t tstride,	ptrdiff_t sstride,	
size_t nelems,	int pe);

• Expand	the	capabilities	of	GET	with

– tstride:	the	stride	between	elements	on	the	target	
array

– sstride:	the	stride	between	elements	on	the	
source	array

0 1 2 3 4

source

sstride

0 1 2 3

target

tstride

4

Remote	Memory	Access

• Put	vs.	Get
– Put	call	completes	when	data	is	“being	sent”
– Get	call	completes	when	data	is	“stored	locally”	

• Cannot	assume	put	has	written	until	later	
synchronization
– Data	still	in	transit	
– Partially	written	at	target
– Put	order	changed	by	e.g.	network	

• Puts	allow	overlap
– Communicate /	Compute /	Synchronize	

