%%3 SHMEM

http://www.openshmem.org/site/

George Bosilca
CS462 - Fall 2016

Parallel Programming Models

 What exactly means parallel: An extension to

concurrency where things happens on different
locations (processors)

* One simple way to differentiate programming models
is by their address space: global vs. distributed

— Global: the address space is reachable by every process
(think threading or OpenMP)

— Distributed: each process address space is private, access
only goes through specialized APl (MPI)

— Middle ground: partitioned global address (PGAS

descendants) where some parts are private and some
shared

The PGAS family

— Libraries: GASNet, ARMCI / Global Arrays,
GASPI/GPI, OpenSHMEM

— Languages: Chapel, Titanuim, X10, UPC, CoArray
Fortran

Program Compiler for given

ingiven Iloanguagf binary
Program

using \=—» Compiler | > binary

Language

Library

PGAS Languages vs Libraries
7

Often more concise More information redundancy in program

Generally not dependent on a particular

Requires compiler support S

Library calls are a "black box" to compiler,

o . .Z o e e . . 1 el e . 0 1
More compiler optimization opportunities typically inhibiting optimization

User may have less control over Often usable from many different
performance languages through bindings

Examples: UPC, CAF, Titanium, Chapel, Examples: OpenSHMEM, Global Arrays,
X10 MPI-3

HOUSTON
Courtesy Dr. Barbara Chapman

PGAS

e Execution entities share a common shared
memory region distributed among all
participants

Chared

Private O Private 1 Private N-1

Context O Context 1 Context N-1

Unified Parallel C (UPC)

* Language defines a “physical” association
between execution contexts (UPC threads) and
shared data items called “affinity”

— Scalars data is affine with execution context O

— Standard data distribution concepts applies: cyclic,
block and block-cyclic

* All interactions with shared data explicitly
managed by the application developer.

— UPC provides a toolbox of basic primitives: locks,
barriers, fences.

* Load balancing is done using the forall concept

CoArray Fortran

SPMD-like: multiple images, each with it’s own index
(similar to rank in MPI), exists

Each image execute independently of the others ... but
the same program

Synchronizations between images is explicit
An “object” (data) has the same name in all images
An image can only work in local data

An image moves remote data to local data, using
explicit CAF syntax.

No data movement outside this concept is allowed.

Symmetrical Hierarchical MEMory

SPMD application developed in C, C++ and Fortran

Similar to CAF: programs perform computations in
their own address space but

— Explicitly communicate data and synchronize with the
other processes

A process participating in SHMEM applications are
called processing elements (PE)

SHMEM provides remote one-sided data transfer, some
basic collective concepts (broadcast and reduction),
specialized synchronizations and atomic memory
operation (remote memory)

History of SHMEM

* Originator: similar time-frame as MPI
— SHMEM in 1993 by Cray Research (for Cray T3D)

— SGl incorporated Cray SHMEM in their Message Passing Toolkit
(MPT)

— Quadrics optimized it for QsNet. First come to the Linux world
— Many others: GSHMEM, University of Florida; HP, IBM,
GPSHMEM (ARMCI).
* Unlike MPI, SHMEM was not defined by a standard. A loose
APl was used instead..

— In other words, while all implementations manipulated similar
concepts they were all different.

— A push for standardization was necessary (OpenSHMEM)

OpenSHMEM

* An effort to create a standardized SHMEM
library APl with a [clear] well-defined behavior

e SGI SHMEM API is the baseline for
OpenSHMEM 1.0

A forum to discuss and extend the SHMEM
standard with critical new capabilities

— http://openshmem.org/site/

— As of September 2016 the Open SHMEM standard
reached version 1.3

Everything evolves around

 Remote Direct Memory Access (RDMA)

— RDMA allows one PE to access certain variables of
another PE without interrupting the other PE

— These data transfers are completely asynchronous
— They can take advantage of hardware support

 Terminology
— PE: processing element, a numbered process
— Origin: process that performs the call
— Remote_pe: process on each the memory is accessed
— Source: array which the data is copied from
— Target: array which the data is copied to

 The key concept here is the symmetric variables
— Force the applications to be SPMD

Symmetric Variables

Scalars or arrays that exists with the same size, type,
and relative address on all PEs.
They can either be

— Global (static variables, or local variables)

— Dynamically allocated and maintained by the SHMEM
library

With little help from the Operating System, the
following types of objects can be made symmetric:
— Fortran data objects: common blocks and SAVE attributes
— Non-stack C and C++ variables
— Fortran arrays allocated with shpalloc
— C and C++ data allocated by shmalloc

Example (dynamic allocation)

int main (void)

{

int *x;

start_pes(4);

X = (int*) shmalloc(sizeof(x));
shmem_barrier_all();
shfree(x);

return O;

}

OpenSHMEM primitives

Initialization and Query

Symmetric Data Management

Data transfers: puts and gets (RDMA)
Synchronization: barrier, fence, quiet

Collective: broadcast, collection (allgather), reduction

Atomic Memory Operations
— Mutual Exclusion
— Swap, add, increment, fetch
Distributed Locks
— Set, free and query
Accessibility Query Routines
— PE accessible, Data accessible

Main Concept

* As the data transfers are one-sided, it is
difficult to maintain a consistent view of the
state of the parallel application

— Only local completion is known, and only in some
cases

— Example: put operation

* Synchronization primitives should be used to
enforce completion of communication steps

Initialization and Query

void start_pes(int npes);
int shmem_my_pe(void);
int shmem_n_pes(void);

int shmem_pe_accessible(int pe);

int shmem_addr_accessible(void *addr, int pe);
void *shmem_ptr(void *target, int pe);

— Only if the target process is running from the same
executable (symmetry of the global variables)

Your first OpenSHMEM application

#include <stdio.h>
#tinclude <shmem.h> /* The shmem header file */

int
main (int argc, char *argv([])

{

int nprocs, me;

start_pes (4);

nprocs = shmem_n_pes (); me = shmem_my_pe ();
printf ("Hello from %d of %d\n", me, nprocs); return O;

o from 0 of 4
o from 2 of 4
o from 3 of 4
ofrom1lof4

@ M @Md O

Symmetric Data Management

* Allocate symmetric, remotely accessible blocks (the call
are extremely similar to their POSIX counterpart)

— void *shmalloc(size_t size);
— void shfree(void *ptr);
— void *shrealloc(void *ptr, size_t size);
— void *shmemalign(size_t alignment, size_t size);
— extern long malloc_error;
* These calls are collective, which means all processes
involved in the execution must make them

— This is a simple way to ensure the symmetry of all
dynamically allocated variables

Remote Memory Access - PUT

void shmem_<type> p(<type>* target,
<type> value, int pe);
void shmem_<type> put(<type>* target,
const <type> *source, size_t len, int pe);

Type can be: floating point [double, float], integer [short,
int, long, longdouble, longlong]

void shmem_putXX(void *target,
const void *source, size_t len, int pe);

XX can be: 32, 64, 128

void shmem_putmem(void *target,
const void *source, size_t len, int pe);

— Byte level function

Remote Memory Access - PUT

* Moves data from local memory to remote
memory:

— Target: remotely accessible object where the data will
be moved

— Source: local data object containing the data to be
copied

— Len: number of elements in the source (and target)
array. The type of elements (from the function name)
will decide how much data will be transferred

— Pe: the target PE for the operation

* |If there is only one data to copy there is an alias
shmem_<type> p

Example - PUT

long source[10]={1,2,3,4,5,6,7,8,9,10 };
static long target[10];

start_pes(2);

Target should be in a
if (_my pe()==0) { symmetric memory

/* put 10 words into target o

shmem_long_put(target, source, 10, 1); Without synchronization

} the target PE does not
shmem_barrier_all(); /* sync sender and receiver */ +———— know when the data is

available

if (_my_pe() == 1) {
for(i=0;i<10; i++)
printf("target[i] on PE %d is %d\n", i, _my_pe(), target[i]);

Remote Memory Access - IPUT

e void shmem_ <TYPE> iput(<TYPE> *target,
const <TYPE> *source, ptrdiff _t tstride,
ptrdiff t sstride, size t nelems, int pe);

e Same idea as PUT plus

— tstride: the stride between elements on the target
array

— sstride: the stride between elements on the
source array

source target

| |

L fol | [af | |20 | [3] | |4 | fol [2] |21 |3] [4

sstride tstride

Remote Memory Access - GET

<type>shmem_<type> g(<type>* target, int pe);
void shmem_<type> get(<type>* target,
const <type> *source, size_t len, int pe);

Type can be: floating point [double, float], integer
[short, int, long, longdouble, longlong]

void shmem_getXX(void *target,
const void *source, size_t len, int pe);

XX can be: 32, 64, 128

void shmem_getmem(void *target,
const void *source, size_t len, int pe);

— Byte level function

Remote Memory Access - GET

* Moves data from remote memory to local
memory:

— Target: local data object containing the data to be
copied

— Source: remotely accessible object where the data will
be moved

— Len: number of elements in the source (and target)
array. The type of elements (from the function name)
will decide how much data will be transferred

— Pe: the source PE for the operation

* |If there is only one data to copy there is an alias
shmem_<type> g

Example - GET

long source;
static long target[10];

start_pes(2);

source =_my_pe(); Target should be in a
symmetric memory

if (_my_pe() ==0){
/* get 1 words from each target PE *

No need for

for(t=0;t< _num_pe(); t+ synchronization after the

shmem _long get(target + t, &source, 1, t); “— call. The call is blocking it
} returns once the operation
shmem_barrier_all(); /* sync sender and receiver */ is completed

if (_my_pe() ==0){
for(i=0; 1< _num_pe(); i++)

printf("target[%d] on PE %d is %d\n", i, target[i], target[i]); _

Example - GET

long source;
static long target[10]; 6
start_pes(2); Oﬁ
source =_my_pe(); N%
o

i (_my_pe() ==0) { \6

/* get 1 words from e~ \e

for(t=0;t< - Q

shme- ((\ 4 t);

1

.c. ©
;X\\S sync sender and receiver */

._ve()==0){
ror(i=0; 1< _num_pe(); i++)
printf("target[%d] on PE %d is %d\n", i, target[i], target[i]);

}

Example - GET

long source;
static long target[10];

start_pes(2);) ..
_P This barrier is needed to

ensure proper initialization
for source on all Pes.

source =_my_pe();
shmem_barrier_all(); /* sync sender and receiver */ —

if (_my_pe()==0){

/* get 1 words from each target PE */
for(t=0;t< _num_pe(); t++)

shmem_long_get(target + t, &source, 1, t);

}

We need

shmem_barrier_all(); /* sync sender and receiver */ <«—m—

if (_my_pe() ==0){
for(i=0;1<_num_pe(); i++)
printf("target[%d] on PE %d is %d\n", i, target[i], target[i]);

Remote Memory Access - IGET

* void shmem_ <TYPE> iget(<TYPE> *target, const
<TYPE> *source, ptrdiff_t tstride, ptrdiff t sstride,
size_t nelems, int pe);

 Expand the capabilities of GET with

— tstride: the stride between elements on the target
array

— sstride: the stride between elements on the
source array

source target
| |

L fol | [af | |20 | [3] | |4 | fol [2] |21 |3] [4

sstride tstride

Remote Memory Access

* Putvs. Get

— Put call completes when data is “being sent”

— Get call completes when data is “stored locally
* Cannot assume put has written until later

synchronization

— Data still in transit

— Partially written at target

— Put order changed by e.g. network
e Puts allow overlap

— Communicate / Compute / Synchronize

”

