
Intra and Inter

Communicators

Groups

• A group is a set of processes

– The group have a size

– And each process have a rank

• Creating a group is a local operation

• Why we need groups

– To make a clear distinction between processes

– To allow communications in-between subsets of

processes

– To create intra and inter communicators …

1 2 3 4

Groups

• MPI_GROUP_*(group1, group2, newgroup)

– Where * Î {UNION, INTERSECTION, DIFFERENCE}

– Newgroup contain the processes satisfying the *

operation ordered first depending on the order in

group1 and then depending on the order in group2.

– In the newgroup each process could be present only

one time.

• There is a special group without any processes
MPI_GROUP_EMPTY.

Groups

• group1 = {a, b, c, d, e}

• group2 = {e, f, g, b, a}

• Union

– newgroup = {a, b, c, d, e, f, g}

• Difference

– newgroup = {c, d}

• Intersection

– newgroup = {a, b, e}

Groups

• MPI_GROUP_*(group, n, ranks, newgroup)

– Where * Î {INCL, EXCL}

– N is the number of valid indexes in the ranks
array.

• For INCL the order in the result group depend

on the ranks order

• For EXCL the order in the result group depend

on the original order

Groups

• Group = {a, b, c, d, e, f, g, h, i, j}

• N = 4, ranks = {3, 4, 1, 5}

• INCL

– Newgroup = {c, d, a, e}

• EXCL

– Newgroup = {b, c, f, g, h, i, j}

Groups

• MPI_GROUP_RANGE_*(group, n, ranges,

newgroup)

– Where * Î {INCL, EXCL}

– N is the number of valid entries in the ranges array

– Ranges is a tuple (start, end, stride)

• For INCL the order in the new group depend on
the order in ranges

• For EXCL the order in the new group depend on
the original order

Groups

• Group = {a, b, c, d, e, f, g, h, i, j}

• N=3; ranges = ((6, 7, 1), (1, 6, 2), (0, 9, 4))

• Then the range
– (6, 7, 1) => {g, h} (ranks (6, 7))

– (1, 6, 2) => {b, d, f} (ranks (1, 3, 5))

– (0, 9, 4) => {a, e, i} (ranks (0, 4, 8))

• INCL
– Newgroup = {g, h, b, d, f, a, e, i}

• EXCL
– Newgroup = {c, j}

Communicators

• A special channel between some processes
used to exchange messages.

• Operations creating the communicators are
collectives, but accessing the communicator
information is a local operation.

• Special communicators: MPI_COMM_WORLD,
MPI_COMM_NULL, MPI_COMM_SELF

• MPI_COMM_DUP(comm, newcomm) create an
identical copy of the comm in newcomm.
– Allow exchanging messages between the same set of

nodes using identical tags (useful for developing
libraries).

• What exactly is a intracommunicator ?

• MPI_COMM_SIZE, MPI_COMM_RANK

• MPI_COMM_COMPARE(comm1, comm2, result)
– MPI_IDENT: comm1 and comm2 represent the same

communicator

– MPI_CONGRUENT: same processes, same ranks

– MPI_SIMILAR: same processes, different ranks

– MPI_UNEQUAL: otherwise

Intracommunicators

- some processes

- ONE group
- one communicator

Intracommunicators

• MPI_COMM_CREATE(comm, group, newcomm)

– Create a new communicator on all processes from the

communicator comm who are defined on the group.

– All others processes get MPI_COMM_NULL

1 2 3 4 5 6 7 8 90

1 3 5 7 9

2 4 6 80

MPI_Group_range_excl(group, 1, (0, 9, 2), odd_group);
MPI_Group_range_excl(group, 1, (1, 9, 2), even_group);

MPI_Comm_create(comm, odd_comm, odd_comm);
MPI_Comm_create(comm, even_group, even_comm);

Intracommunicators

• MPI_COMM_SPLIT(comm, color, key, newcomm)

– Color : control of subset assignment

– Key : control of rank assignement

rank 0 1 2 3 4 5 6 7 8 9

process A B C D E F G H I J

color 0 ^ 3 0 3 0 0 5 3 ^

key 3 1 2 5 1 1 1 2 1 0

3 different colors => 3 communicators
1. {A, D, F, G} with ranks {3, 5, 1, 1} => {F, G, A, D}

2. {C, E, I} with ranks {2, 1, 3} => {E, I, C}
3. {H} with ranks {1} => {H}

B and J get MPI_COMM_NULL as they provide an undefined color (MPI_UNDEFINED)

Intracommunicators

1 2 3 4 5 6 7 8 90

1 3 5 7 9

2 4 6 80

Rank 0 1 2 3 4 5 6 7 8 9

process A B C D E F G H I J

Color 0 1 0 1 0 1 0 1 0 1

Key 1 1 1 1 1 1 1 1 1 1

• And what�s a intercommunicator ?

• MPI_COMM_REMOTE_SIZE(comm, size)
MPI_COMM_REMOTE_GROUP(comm, group)

• MPI_COMM_TEST_INTER(comm, flag)

• MPI_COMM_SIZE, MPI_COMM_RANK return
the local size respectively rank

Intercommunicators

- some more processes

- TWO groups
- one communicator

Anatomy of a Intercommunicator

a1 a2 a3 a4

b1 b2 b3

Intercommunicator

Group (A)

Group (B)

For any processes from group (A)
• (A) is the local group

• (B) is the remote group

For any processes from group (B)
• (A) is the remote group

• (B) is the local group

It�s not possible to send a
message to a process in the

same group using this
communicator

Intercommunicators

• MPI_COMM_CREATE(comm, group, newcomm)

– All processes on the left group should execute the call

with the same subgroup of processes, when all

processes from the right side should execute the call
with the same subgroup of processes. Each of the

subgroup is related to a different side.

a1 a2 a3 a4

b1 b2 b3

a1 a2 a3

b2 b3

Intercommunicators

• MPI_INTERCOMM_CREATE(local_comm, local_leader,
bridge_comm, remote_leader, tag, newintercomm)
Local_comm : local intracommunicator

Local_leader : rank of root in the local_comm

Bridge_comm : �bridge� communicator …

Remote_leader : rank of remote leader in bridge_comm

MPI_INTERCOMM_CREATE

lca, 0, lb, 2, tag, new

lcb, 4, lb, 1, tag, new

lca

lcb

lb

Intercommunicators

• MPI_INTERCOMM_MERGE(intercomm, high, intracomm)

– Create an intracomm from the union of the two groups

– The order of processes in the union respect the original one

– The high argument is used to decide which group will be first (rank 0)

a1 a2 a3 a4

b1 b2 b3

high = false

high = true

b1 b2 b3 a1 a2 a3 a4

Example

MPI_Comm inter_comm, new_inter_comm;

MPI_Group local_group, group;

int rank = 0;

if(/* left side (ie. a*) */) {

MPI_Comm_group(inter_comm, &local_group);

MPI_Group_incl(local_group, 1, &rank, &group);

MPI_Group_free(&local_group);

} else

MPI_Comm_group(inter_comm, &group);

MPI_Comm_create(inter_comm, group,

&new_inter_comm);

MPI_Group_free(&group);

a1 a2 a3 a4

b1 b2 b3

a1

b1 b2 b3

Exercice

0 1 2 3 4 5 6 7 8 9 a b

0

3

6

9

1

4

7

a

2

5

8

b

Intercommunicators – P2P

• Intracommunicator • Intercommunicator

On process 0:

MPI_Send(buf, MPI_INT, 1, n, tag, intercomm)

N = 3

N = 3

Intercommunicators– P2P

• Intracommunicator • Intercommunicator

On process 0:

MPI_Send(buf, MPI_INT, 1, 0, tag, intercomm)

Not MPI safe if the receive
was not posted before.

Communicators - Collectives

• Simple classification by operation class

• One-To-All (simplex mode)
– One process contributes to the result. All processes receive the result.

• MPI_Bcast
• MPI_Scatter, MPI_Scatterv

• All-To-One (simplex mode)
– All processes contribute to the result. One process receives the result.

• MPI_Gather, MPI_Gatherv

• MPI_Reduce

• All-To-All (duplex mode)
– All processes contribute to the result. All processes receive the result.

• MPI_Allgather, MPI_Allgatherv

• MPI_Alltoall, MPI_Alltoallv

• MPI_Allreduce, MPI_Reduce_scatter

• Other
– Collective operations that do not fit into one of the above categories.

• MPI_Scan
• MPI_Barrier

Collectives

Who generate

the result

Who receive

the result

One-to-all
One in the

local group

All in the

local group

All-to-one
All in the

local group

One in the

local group

All-to-all
All in the

local group

All in the

local group

Others ? ?

Extended Collectives

Who generate

the result

Who receive

the result

One-to-all
One in the

local group

All in the

remote group

All-to-one
All in the

local group

One in the

remote group

All-to-all
All in the

local group

All in the

remote group

Others ? ?

From each process point of view

Extended Collectives

• Simplex mode (ie. rooted operations)
– A root group

• The root use MPI_ROOT as root process

• All others use MPI_PROC_NULL

– A second group
• All use the real rank of the root in the remote group

• Duplex mode (ie. non rooted operations)
– Data send by the process in one group is

received by the process in the other group
and vice-versa.

Broadcast

One-to-all
One in the

local group

All in the

local group

MPI_Bcast(buf, 1, MPI_INT, 0, intracomm)

Before After

Extended Broadcast

One-to-all
One in the

local group

All in the

remote group
Root group root process: MPI_Bcast(buf, 1, MPI_INT, MPI_ROOT, intercomm)
Root group other processes: MPI_Bcast(buf, 1, MPI_INT, MPI_PROC_NULL, intercomm)
Other group MPI_Bcast(buf, 1, MPI_INT, root_rank, intercomm)

Before After

Allreduce

All-to-all
All in the

local group

All in the

local group

MPI_Allreduce(sbuf, rbuf, 1, MPI_INT, +, intracomm)

Before After

+
+
+
+

S
iz

e
 d

o
e
s
n
�
t

m
a
tt
e
r

Extended Allreduce

All-to-all
All in the

local group

All in the

remote group

MPI_Allreduce(sbuf, rbuf, 1, MPI_INT, +, intercomm)

Before After

+
+
+

+
+
+
+

S
iz

e
 d

o
e
s
n
�
t

m
a
tt
e
r

AllGather

All-to-all
All in the

local group

All in the

local group

MPI_Allgather(sbuf, 1, MPI_INT, rbuf, 1, MPI_INT, intracomm)

Before After

S
iz

e
 d

o
e
s

m
a
tt
e
r

Extended AllGather

All-to-all
All in the

local group

All in the

remote group

Before After

MPI_Allgather(sbuf, 1, MPI_INT, rbuf, 1, MPI_INT, intercomm)

S
iz

e
 d

o
e
s

m
a
tt
e
r

? ?

Extended AllGather

All-to-all
All in the

local group

All in the

remote group

Before After

MPI_Allgather(sbuf, 1, MPI_INT, rbuf, 1, MPI_INT, intercomm)

S
iz

e
 d

o
e
s

m
a
tt
e
r

Scan/Exscan and Barrier

• Scan and Exscan are illegal on

intercommunicators

• For MPI_Barrier all processes in a group
may exit the barrier when all processes on
the other group have entered in the

barrier.

