
Thread	Management	(join)

Join	blocks	the	calling	thread	until	the	target	thread	terminates,	and	returns	
it’s	thread_exit argument.
It	is	impossible to	join	a	thread	in	a	detached	state.	It	is	also	impossible	to	
reattach	it

int	pthread_join (pthread_t thread,
void	**value_ptr)																																							[OUT]	thread	return	value

int pthread_detach (pthread_t thread)
int pthread_attr_setdetachstate (pthread_attr_t *attr, [IN/OUT]	attribute

int detachstate)														[IN]	state	to	be	set
int pthread_attr_getdetachstate (const pthread_attr_t *attr,

int *detachstate)												[OUT]	detach	state	value



Thread	Management	(state)

The	POSIX	standard	does	not	dictate	the	size	of	a	thread's	stack	!

int pthread_attr_getstacksize (const pthread_attr_t *restrict	attr,
size_t *restrict	stacksize)

int pthread_attr_setstacksize (pthread_attr_t *attr,	size_t stacksize)
int pthread_attr_getstackaddr (const pthread_attr_t *restrict	attr,

void	**restrict	stackaddr)
int pthread_attr_setstackaddr (pthread_attr_t *attr,	void	*stackaddr)
pthread_t pthread_self (void)
int pthread_equal (pthread_t t1,	pthread_t t2)



Example:	A	Producer	– Consumer	
Queue

• We	have	a	bounded	queue	where	
producers	store	their	output	and	
from	where	consumers	take	their	
input

• Protect	the	structure	against	
intensive	unnecessary	accesses
– Detect	boundary	conditions:	queue	
empty	and	queue	full

Bo
un

de
d	
Q
ue

ue

…
producers

…consumers



Example:	dot-product

• Divide	the	arrays	between	participants	
to	load-balance	the	work
– Each	will	then	compute	a	partial	sum

• Add	all	the	partial	sums	together	for	
the	final	result	(reduce	operation)

• Technical	details:	cost	of	managing	the	
threads	vs.	cost	of	the	algorithm?	How	
to	minimize	the	management	cost?

Scalar	product,	inner	product

=
PN

n=1 ai.bi

a

b

a

b

Thr 1 Thr 2 Thr 3

Partial
sum

Partial
sum

Partial
sum

+

+



Homework:	the	dining	philosophers	
problem

Dijkstra,	1965:	Five	silent	philosophers	sit	at	a	round	table	with	bowls	of	
spaghetti.	Forks	are	placed	between	each	pair	of	adjacent	philosophers.
Each	philosopher	must	alternately	think	and	eat.	However,	a	philosopher	
can	only	eat	spaghetti	when	he	has	both	left	and	right	forks.	Each	fork	
can	be	held	by	only	one	philosopher	and	so	a	philosopher	can	use	the	
fork	only	if	it	is	not	being	used	by	another	philosopher.	After	he	finishes	
eating,	he	needs	to	put	down	both	forks	so	they	become	available	to	
others.	A	philosopher	can	take	the	fork	on	his	right	or	the	one	on	his	left	
as	they	become	available,	but	cannot	start	eating	before	getting	both	of	
them.	
Eating	is	not	limited	by	the	remaining	amounts	of	spaghetti	or	stomach	
space;	an	infinite	supply	and	an	infinite	demand	are	assumed.

2

1
5

4

3

Deliver	in	2	weeks	(Friday	09/09):	A	pdf document	with	the	description	of	the	problem	
as	you	understand	it	and	with	the	solution	you	choose	to	implement.	Implement	a	
solution	for	an	unbounded	number	of	philosophers,	where	each	philosopher	is	
implemented	as	a	thread,	and	the	forks	are	the	synchronizations	needed	between	
them.	Provide	the	C	source	code	and	a	makefile,	allowing	for	smooth	compilation	and	
execution.


