
POSIX Threads: a first step 
toward parallel programming

George Bosilca
bosilca@icl.utk.edu



Shared/Exclusive Locks

• ReadWrite Mutual exclusion 
• Extension used by the reader/writer model
• 4 states: write_lock, write_unlock, read_lock and 

read_unlock.
• multiple threads may hold a shared lock 

simultaneously, but only one thread may hold an 
exclusive lock. 

• if one thread holds an exclusive lock, no threads 
may hold a shared lock.



Shared/Exclusive Locks

rw_lock

rw_unlock
…

…
Writer 1

rw_lock

rw_unlock
…

…
Writer 2

rd_lock

rd_unlock
…

…
Reader 1

rd_lock

rd_unlock
…

…
Reader 2

rw_lock

rw_unlock
…

…
Writer 1

rw_lock

rw_unlock
…

…
Writer 2

rd_lock

rd_unlock
…

…
Reader 1

rd_lock

rd_unlock
…

…
Reader 2

Active thread
Sleeping thread

Legend

Step 1

Step 2



Shared/Exclusive Locks

Active thread
Sleeping thread

Legend

rw_lock

rw_unlock
…

…
Writer 1

rw_lock

rw_unlock
…

…
Writer 2

rd_lock

rd_unlock
…

…
Reader 1

rd_lock

rd_unlock
…

…
Reader 2

rw_lock

rw_unlock
…

…
Writer 1

rw_lock

rw_unlock
…

…
Writer 2

rd_lock

rd_unlock
…

…
Reader 1

rd_lock

rd_unlock
…

…
Reader 2

Step 3

Step 4



Shared/Exclusive Locks

Active thread
Sleeping thread

Legend

rw_lock

rw_unlock
…

…
Writer 1

rw_lock

rw_unlock
…

…
Writer 2

rd_lock

rd_unlock
…

…
Reader 1

rd_lock

rd_unlock
…

…
Reader 2

rw_lock

rw_unlock
…

…
Writer 1

rw_lock

rw_unlock
…

…
Writer 2

rd_lock

rd_unlock
…

…
Reader 1

rd_lock

rd_unlock
…

…
Reader 2

Step 5

Step 6

… …

…



Shared/Exclusive Locks

Active thread
Sleeping thread

Legend

rw_lock

rw_unlock
…

…
Writer 1

rw_lock

rw_unlock
…

…
Writer 2

rd_lock

rd_unlock
…

…
Reader 1

rd_lock

rd_unlock
…

…
Reader 2

Step 7… …



Condition Variable

• Block a thread while waiting for a condition
• Condition_wait / condition_signal
• Several thread can wait for the same 

condition, they all get the signal

signal
…

…
Thread 1

Active threads Sleeping threads

condition
wait
…

…
Thread 2

wait
…

…
Thread 3



Condition Variable

• Block a thread while waiting for a condition
• Condition_wait / condition_signal
• Several thread can wait for the same 

condition, they all get the signal

signal
…

…
Thread 1

Active threads

wait
…

…
Thread 3

…

…
Thread 2

wait



Condition Variable

• Block a thread while waiting for a condition
• Condition_wait / condition_signal
• Several thread can wait for the same 

condition, they all get the signal

signal
…

…
Thread 1

Active threads

wait
…

…
Thread 3

…

…
Thread 2

wait



Condition Variable

• Block a thread while waiting for a condition
• Condition_wait / condition_signal
• Several thread can wait for the same 

condition, they all get the signal

signal
…

…
Thread 1

Active threads

wait
…

…
Thread 3

…

…
Thread 2

wait



Condition Variable

• Block a thread while waiting for a condition
• Condition_wait / condition_signal
• Several thread can wait for the same 

condition, they all get the signal

signal
…

…
Thread 1

Active threads

wait
…

…
Thread 2

wait
…

…
Thread 3



Semaphores

• simple counting mutexes
• The semaphore can be hold by as many 

threads as the initial value of the 
semaphore.

• When a thread get the semaphore it 
decrease the internal value by 1.

• When a thread release the semaphore it 
increase the internal value by 1.



Semaphores

get

release
…

…
Thread 1

Semaphore (2)
get

release
…

…
Thread 2

get

release
…

…
Thread 3

get

release
…

…
Thread 1

Semaphore (1)
get

release
…

…
Thread 2

get

release
…

…
Thread 3



Semaphores

get

release
…

…
Thread 1

Semaphore (0)
get

release
…

…
Thread 2

get

release
…

…
Thread 3

get

release
…

…
Thread 1

Semaphore (0)
get

release
…

…
Thread 2

get

release
…

…
Thread 3



Semaphores

get

release
…

…
Thread 1

Semaphore (1)
get

release
…

…
Thread 2

get

release
…

…
Thread 1

Semaphore (1)
get

release
…

…
Thread 2

get

release
…

…
Thread 3

get

release
…

…
Thread 3



Semaphores

get

release
…

…
Thread 1

Semaphore (1)
get

release
…

…
Thread 2

get

release
…

…
Thread 1

Semaphore (2)
get

release
…

…
Thread 2

get

release
…

…
Thread 3

get

release
…

…
Thread 3



Atomic instruction

• Is any operation that a CPU can perform such 
that all results will be made visible to each CPU 
at the same time and whose operation is safe 
from interference by other CPUs
– TestAndSet
– CompareAndSwap
– DoubleCompareAndSwap
– Atomic increment
– Atomic decrement



Pthread API
Prefix Use
pthread_ Thread	management	(create/destroy/cancel/join/exit)

pthread_attr_ Thread	attributes

pthread_mutex_ Mutexes

pthread_mutexattr_ Mutexes attributes

pthread_cond_ Condition	variables

pthread_condattr_ Condition	attributes

pthread_key_ Thread-specific	data	key	(TLS)

pthread_rwlock_ Read/write	locks

pthread_barrier_ Synchronization	barriers



Thread	Management	(create)

Attributes:	Detached	or	joinable	state,	Scheduling	inheritance,	Scheduling	
policy,	Scheduling	parameters,	Scheduling	contention	scope,	Stack	size,	Stack	
address,	Stack	guard	(overflow)	size

int pthread_create (pthread_t *restrict	thread,																						[OUT]	thread	id
const pthread_attr_t *restrict	attr,									[IN]				attributes
void	*(*start_routine)(void	*),																	[IN]	thread	function
void	*restrict	arg)																																							[IN]	argument	for	thread	function

int pthread_exit (void	*value_ptr)																																														[OUT]	Return	to	caller/joiner
int pthread_cancel (pthread_t thread)																																						[IN]	thread	to	be	cancelled
int pthread_attr_init (pthread_attr_t *attr)																													[OUT]	attributes	to	be	initialized
int pthread_attr_set*(pthread_attr_t *restrict	attr,	*)											[IN]	set	attributed	(state,	stack)
int pthread_attr_destroy (pthread_attr_t *attr)																						[IN]	attributed	to	be	destroyed

Questions:
- Once	created	what	will	be	the	status	of	the	thread	and	how	it	will	be	scheduled	

by	the	OS	?	(use	sched_setscheduler)
- Where	it	will	be	run	?	(use	sched_setaffinity or	HWLOC)


