
POSIX Threads: a first step 
toward parallel programming

George Bosilca
bosilca@icl.utk.edu



Process vs. Thread
• A process is a collection of virtual memory 

space, code, data, and system resources.
• A thread (lightweight process) is code that is to be 

serially executed within a process.
• A process can have several threads.

Threads executing the same block of code maintain 
separate stacks. Each thread in a process shares that 

process's global variables and resources.

Possible to create more efficient applications ?

Process	State:	
register,	SP,	PC,	…

Code	Segment

Data	Segment

Heap

Stack

Process



Terminology
• Lightweight	Process	(LWP):	or	kernel	thread
• X-to-Y	model:	the	mapping	between	the	LWP	and	the	user	threads	

(1:X	– Unix	&	co.,	X:1	– User	level	threads,	X:Y – Windows	7).
• Contention	Scope:	how	threads	compete	for	system	resources
• Thread-safe	a	program	that	protects	the	shared	data	for	its	threads	

(mutual	exclusion)
• Reentrant	code:	a	program	that	can	have	more	than	one	thread	

executing	concurrently.
• Async-safe	means	that	a	function	is	reentrant	while	handling	a	

signal	(i.e.	can	be	called	from	a	signal	handler).
• Concurrency	vs.	Parallelism	- They	are	not	the	same!	Parallelism	

implies	simultaneous	running	of	code	(which	is	not	possible,	in	the	
strict	sense,	on	uniprocessor	machines)	while	concurrency	implies	
that	many	tasks	can	run	in	any	order	and	possibly	in	parallel.



Thread	vs.	Process
• Threads	share	the	address	space	of	the	process	that	created	it;	

processes	have	their	own	address	space.
• Threads	have	direct	access	to	the	data	segment	of	its	process;	

processes	have	their	own	copy	of	the	data	segment	of	the	parent	
process.

• Threads	can	directly	communicate	with	other	threads	of	its	
process;	processes	must	use	interprocess communication	to	
communicate	with	sibling	processes.

• Threads	have	almost	no	overhead;	processes	have	considerable	
overhead.

• New	threads	are	easily	created;	new	processes	require	
duplication	of	the	parent	process.

• Threads	can	exercise	considerable	control	over	threads	of	the	
same	process;	processes	can	only	exercise	control	over	child	
processes.

• Changes	to	the	main	thread	(cancellation,	priority	change,	etc.)	
may	affect	the	behavior	of	the	other	threads	of	the	process;	
changes	to	the	parent	process	does	not	affect	child	processes.

2.2.2	The	Classical	Thread	Model in Modern	Operating	Systems	3e by	Tanenbaum



Process vs. Thread

• Multithreaded applications must avoid two 
threading problems: deadlocks and races.

• A deadlock occurs when each thread is waiting 
for the other to do something.

• A race condition occurs when one thread 
finishes before another on which it depends, 
causing the former to use a bogus value 
because the latter has not yet supplied a valid 
one.



The key is synchronization

• Synchronization = gaining access to a 
shared resource.

• Synchronization REQUIRE cooperation.



POSIX Thread

• What�s POSIX ?
– Widely used UNIX specification
– Most of the UNIX flavor operating systems

POSIX is the Portable Operating System 
Interface, the open operating interface 
standard accepted world-wide. It is 
produced by IEEE and recognized by ISO 
and ANSI.



Mutual exclusion

• Simple lock primitive with 2 states: lock 
and unlock

• Only one thread can lock the mutex.
• Several politics: FIFO, random, 

recursive

lock

unlock
…

…
Thread 1

lock

unlock
…

…
Thread 2

lock

unlock
…

…
Thread 3

Active threads



Mutual exclusion

• Simple lock primitive with 2 states: lock 
and unlock

• Only one thread can lock the mutex.
• Several politics: FIFO, random, 

recursive

lock

unlock
…

…
Thread 1

lock

unlock
…

…
Thread 3

Active threads

lock

unlock
…

…
Thread 2



Mutual exclusion

• Simple lock primitive with 2 states: lock 
and unlock

• Only one thread can lock the mutex.
• Several politics: FIFO, random, 

recursive

lock

unlock
…

…
Thread 1

lock

unlock
…

…
Thread 3

Active threads

lock

unlock
…

…
Thread 2



Mutual exclusion

• Simple lock primitive with 2 states: lock 
and unlock

• Only one thread can lock the mutex.
• Several politics: FIFO, random, 

recursive

lock

unlock
…

…
Thread 1

lock

unlock
…

…
Thread 3

Active threads

lock

unlock
…

…
Thread 2



Mutual exclusion

• Simple lock primitive with 2 states: lock 
and unlock

• Only one thread can lock the mutex.
• Several politics: FIFO, random, 

recursive

lock

unlock
…

…
Thread 1

lock

unlock
…

…
Thread 3

Active threads

lock

unlock
…

…
Thread 2



Mutual exclusion

• Simple lock primitive with 2 states: lock 
and unlock

• Only one thread can lock the mutex.
• Several politics: FIFO, random, 

recursive

lock

unlock
…

…
Thread 1

lock

unlock
…

…
Thread 3

Active threads

lock

unlock
…

…
Thread 2



Mutual exclusion

• Spin vs. sleep ?
• What�s the desired lock grain ?

– Fine grain – spin mutex
– Coarse grain – sleep mutex

• Spin mutex: use CPU cycles and increase 
the memory bandwidth, but when the 
mutex is unlock the thread continue his 
execution immediately.


