
Jeff Larkin <jlarkin@nvidia.com>, November 18, 2016

OpenACC Pipelining

2

Asynchronous Programming

Real World Examples:

• Cooking a Meal: Boiling potatoes while preparing other parts of the dish.

• Three students working on a project on George Washington, one researches his
early life, another his military career, and the third his presidency.

• Automobile assembly line: each station adds a different part to the car until it is
finally assembled.

Programming multiple operations without immediate synchronization

3

Asynchronous OpenACC

So far, all OpenACC directives have been synchronous with the host

• Host waits for the parallel loop to complete

• Host waits for data updates to complete

Most OpenACC directives can be made asynchronous

• Host issues multiple parallel loops to the device before waiting

• Host performs part of the calculation while the device is busy

• Data transfers can happen before the data is needed

4

Asynchronous Pipelining

Very large operations may
frequently be broken into
smaller parts that may be
performed independently.

Pipeline Stage -A single step,
which is frequently limited to 1
part at a time

Photo by Roger Wollstadt, used via Creative Commons

5

Case Study: Image Filter

The example code reads an image from a file,
applies a simple filter to the image, then outputs
the file.

Skills Used:

• Parallelize the filter on the GPU

• Data Region and Update Directive

• Async and Wait directives

• Pipelining

6

Image Filter Code
#pragma acc parallel loop collapse(2) gang vector
for (y = 0; y < h; y++); for (x = 0; x < w; x++)
{
float blue = 0.0, green = 0.0, red = 0.0;
for (int fy = 0; fy < filtersize; fy++)
{
long iy = y - (filtersize/2) + fy;
for (int fx = 0; fx < filtersize; fx++)
{
blue+=filter[fy][fx]*imgData[iy*step+ix*ch];
green+=filter[fy][fx]*imgData[iy*step+ix*ch+1];
red+=filter[fy][fx]*imgData[iy*step+ix*ch+2];

}
}
out[y * step + x * ch] = 255 - scale * blue;
out[y * step + x * ch + 1] = 255 - scale * green;
out[y * step + x * ch + 2] = 255 - scale * red;

}

Iterate over all pixels

Apply filter

Save output

7

GPU Timeline

8

GPU Timeline
Roughly 1/3 of the

runtime is occupied

with data transfers.

9

GPU Timeline
Roughly 1/3 of the

runtime is occupied

with data transfers.

What if we could

overlap the copies

with the

computation?

10

GPU Timeline
Roughly 1/3 of the

runtime is occupied

with data transfers.

What if we could

overlap the copies

with the

computation?

Rough Math:

3.2ms - .5ms - .5ms

= 2.2 ms

3.2 / 2.2 ~= 1.45X

11

Pipelining Data Transfers

H2D kernel D2H H2D kernel D2H

H2D kernel D2H

H2D kernel D2H

Two Independent Operations Serialized

Overlapping Copying and Computation

NOTE: In real

applications,

your boxes will

not be so evenly
sized.

H2D kernel D2H

12

Blocking the Code

Before we can overlap data
transfers with computation, we
need to break our work into
smaller chunks.

Since each pixel is calculated
independently, the work can be
easily divided.

We’ll divide along chunks of rows
for convenience.

13

Blocked Image Filter Code
#pragma acc data copyin(imgData[:w*h*ch],filter)

copyout(out[:w*h*ch])
for (long blocky = 0; blocky < nblocks; blocky++){
long starty = blocky * blocksize;
long endy = starty + blocksize;

#pragma acc parallel loop collapse(2) gang vector
for (y=starty; y<endy; y++); for(x=0; x<w; x++) {

float blue = 0.0, green = 0.0, red = 0.0;
for (int fy = 0; fy < filtersize; fy++) {
long iy = y - (filtersize/2) + fy;
for (int fx = 0; fx < filtersize; fx++){

long ix = x - (filtersize/2) + fx;
blue+=filter[fy][fx]*imgData[iy*step+ix*ch];
green+=filter[fy][fx]*imgData[iy*step+ix*ch+1];
red+=filter[fy][fx]*imgData[iy*step+ix*ch+2];

}
}
out[y*step+x*ch] = 255 - (scale * blue);
out[y*step+x*ch+1] = 255 - (scale * green);
out[y*step+x*ch+2] = 255 - (scale * red);

}
}

1. Add blocking loop

14

Blocked Image Filter Code
#pragma acc data copyin(imgData[:w*h*ch],filter)

copyout(out[:w*h*ch])
for (long blocky = 0; blocky < nblocks; blocky++){
long starty = blocky * blocksize;
long endy = starty + blocksize;

#pragma acc parallel loop collapse(2) gang vector
for (y=starty; y<endy; y++); for(x=0; x<w; x++) {

float blue = 0.0, green = 0.0, red = 0.0;
for (int fy = 0; fy < filtersize; fy++) {
long iy = y - (filtersize/2) + fy;
for (int fx = 0; fx < filtersize; fx++){

long ix = x - (filtersize/2) + fx;
blue+=filter[fy][fx]*imgData[iy*step+ix*ch];
green+=filter[fy][fx]*imgData[iy*step+ix*ch+1];
red+=filter[fy][fx]*imgData[iy*step+ix*ch+2];

}
}
out[y*step+x*ch] = 255 - (scale * blue);
out[y*step+x*ch+1] = 255 - (scale * green);
out[y*step+x*ch+2] = 255 - (scale * red);

}
}

1. Add blocking loop

2. Adjust “y” to only

iterate through rows within

a single chunk.

15

Blocked Image Filter Code
#pragma acc data copyin(imgData[:w*h*ch],filter)

copyout(out[:w*h*ch])
for (long blocky = 0; blocky < nblocks; blocky++){
long starty = blocky * blocksize;
long endy = starty + blocksize;

#pragma acc parallel loop collapse(2) gang vector
for (y=starty; y<endy; y++); for(x=0; x<w; x++) {

float blue = 0.0, green = 0.0, red = 0.0;
for (int fy = 0; fy < filtersize; fy++) {
long iy = y - (filtersize/2) + fy;
for (int fx = 0; fx < filtersize; fx++){

long ix = x - (filtersize/2) + fx;
blue+=filter[fy][fx]*imgData[iy*step+ix*ch];
green+=filter[fy][fx]*imgData[iy*step+ix*ch+1];
red+=filter[fy][fx]*imgData[iy*step+ix*ch+2];

}
}
out[y*step+x*ch] = 255 - (scale * blue);
out[y*step+x*ch+1] = 255 - (scale * green);
out[y*step+x*ch+2] = 255 - (scale * red);

}
}

3. Data region to handle

copies

1. Add blocking loop

2. Adjust “y” to only

iterate through rows within

a single chunk.

16

GPU Timeline Blocked

Compute kernel is

now broken in 8

blocks.

Data transfers still

happen at

beginning and end.

17

OpenACC Update Directive

Programmer specifies an array (or part of an array) that should be refreshed within a
data region. (Host and Device copies are made coherent)

do_something_on_device()

!$acc update host(a)

do_something_on_host()

!$acc update device(a)

Note: Update “host” has been deprecated and renamed “self”

Copy “a” from GPU to

CPU

Copy “a” from CPU to

GPU

18

Blocked Update Code
#pragma acc data create(imgData[w*h*ch],out[w*h*ch])

copyin(filter)
for (long blocky = 0; blocky < nblocks; blocky++)
{
long starty = MAX(0,blocky * blocksize - filtersize/2);
long endy = MIN(h,starty + blocksize + filtersize/2);

#pragma acc update device(imgData[starty*step:(endy-starty)*step])
starty = blocky * blocksize;
endy = starty + blocksize;

#pragma acc parallel loop collapse(2) gang vector
for (y=starty; y<endy; y++) for (x=0; x<w; x++) {

<filter code ommitted>
out[y * step + x * ch] = 255 - (scale * blue);
out[y * step + x * ch + 1] = 255 - (scale * green);
out[y * step + x * ch + 2] = 255 - (scale * red);

}
#pragma acc update self(out[starty*step:blocksize*step])
}

Change data clauses to

create

19

Blocked Update Code
#pragma acc data create(imgData[w*h*ch],out[w*h*ch])

copyin(filter)
for (long blocky = 0; blocky < nblocks; blocky++)
{
long starty = MAX(0,blocky * blocksize - filtersize/2);
long endy = MIN(h,starty + blocksize + filtersize/2);

#pragma acc update device(imgData[starty*step:(endy-starty)*step])
starty = blocky * blocksize;
endy = starty + blocksize;

#pragma acc parallel loop collapse(2) gang vector
for (y=starty; y<endy; y++) for (x=0; x<w; x++) {

<filter code ommitted>
out[y * step + x * ch] = 255 - (scale * blue);
out[y * step + x * ch + 1] = 255 - (scale * green);
out[y * step + x * ch + 2] = 255 - (scale * red);

}
#pragma acc update self(out[starty*step:blocksize*step])
}

Change data clauses to

create

Update data one block at a

time.

20

Blocked Update Code
#pragma acc data create(imgData[w*h*ch],out[w*h*ch])

copyin(filter)
for (long blocky = 0; blocky < nblocks; blocky++)
{
long starty = MAX(0,blocky * blocksize - filtersize/2);
long endy = MIN(h,starty + blocksize + filtersize/2);

#pragma acc update device(imgData[starty*step:(endy-starty)*step])
starty = blocky * blocksize;
endy = starty + blocksize;

#pragma acc parallel loop collapse(2) gang vector
for (y=starty; y<endy; y++) for (x=0; x<w; x++) {

<filter code ommitted>
out[y * step + x * ch] = 255 - (scale * blue);
out[y * step + x * ch + 1] = 255 - (scale * green);
out[y * step + x * ch + 2] = 255 - (scale * red);

}
#pragma acc update self(out[starty*step:blocksize*step])
}

Change data clauses to

create

Update data one block at a

time.

Copy results back one block

at a time.

21

GPU Timeline Blocked Updates

Compute and

Updates happen in

blocks.

The last step is to

overlap compute

and copy.

22

OpenACC async and wait
async(n): launches work asynchronously in queue n

wait(n): blocks host until all operations in queue n have completed

Work queues operate in-order, serving as a way to express dependencies.

Work queues of different numbers may (or may not) run concurrently.

#pragma acc parallel loop async(1)

...

#pragma acc parallel loop async(1)

for(int i=0; i<N; i++)

...

#pragma acc wait(1)

for(int i=0; i<N; i++)

If n is not specified,

async will go into a

default queue and

wait will wait all

previously queued

work.

23

Pipelined Code
#pragma acc data create(imgData[w*h*ch],out[w*h*ch])

copyin(filter)
{
for (long blocky = 0; blocky < nblocks; blocky++)
{
long starty = MAX(0,blocky * blocksize - filtersize/2);
long endy = MIN(h,starty + blocksize + filtersize/2);

#pragma acc update device(imgData[starty*step:(endy-starty)*step]) async(block%3+1)
starty = blocky * blocksize;
endy = starty + blocksize;

#pragma acc parallel loop collapse(2) gang vector async(block%3+1)
for (y=starty; y<endy; y++) for (x=0; x<w; x++) {

<filter code ommitted>
out[y * step + x * ch] = 255 - (scale * blue);
out[y * step + x * ch + 1] = 255 - (scale * green);
out[y * step + x * ch + 2] = 255 - (scale * red);

}
#pragma acc update self(out[starty*step:blocksize*step]) async(block%3+1)
}
#pragma acc wait
}

Cycle between 3 async

queues by blocks.

24

Pipelined Code
#pragma acc data create(imgData[w*h*ch],out[w*h*ch])

copyin(filter)
{
for (long blocky = 0; blocky < nblocks; blocky++)
{
long starty = MAX(0,blocky * blocksize - filtersize/2);
long endy = MIN(h,starty + blocksize + filtersize/2);

#pragma acc update device(imgData[starty*step:(endy-starty)*step]) async(block%3+1)
starty = blocky * blocksize;
endy = starty + blocksize;

#pragma acc parallel loop collapse(2) gang vector async(block%3+1)
for (y=starty; y<endy; y++) for (x=0; x<w; x++) {

<filter code ommitted>
out[y * step + x * ch] = 255 - (scale * blue);
out[y * step + x * ch + 1] = 255 - (scale * green);
out[y * step + x * ch + 2] = 255 - (scale * red);

}
#pragma acc update self(out[starty*step:blocksize*step]) async(block%3+1)
}
#pragma acc wait
}

Cycle between 3 async

queues by blocks.

Wait for all blocks to

complete.

25

GPU Timeline Pipelined

We’re now able to

overlap compute

and copy.

26

Step-by-Step Performance

1.00X
0.93X

0.60X

1.45X

0.00X

0.20X

0.40X

0.60X

0.80X

1.00X

1.20X

1.40X

1.60X

1.80X

2.00X

Original Blocked Update Pipelined

S
p
e
e
d
-u

p
 f

ro
m

 o
ri

g
in

a
l

Source: PGI 16.9, NVIDIA Tesla K20c

27

Multi-GPU Pipelining

28

Multi-GPU OpenACC with OpenMP
#pragma omp parallel num_threads(acc_get_num_devices(acc_device_nvidia))

{

int myid = omp_get_thread_num();

acc_set_device_num(myid,acc_device_nvidia);

int queue = 1;

#pragma acc data create(imgData[w*h*ch],out[w*h*ch])

{

#pragma omp for schedule(static)

for (long blocky = 0; blocky < nblocks; blocky++)

{

// For data copies we need to include the ghost zones for the filter

long starty = MAX(0,blocky * blocksize - filtersize/2);

long endy = MIN(h,starty + blocksize + filtersize/2);

#pragma acc update device(imgData[starty*step:(endy-starty)*step]) async(queue)

starty = blocky * blocksize;

endy = starty + blocksize;

#pragma acc parallel loop collapse(2) gang vector async(queue)

for (long y = starty; y < endy; y++){ for (long x = 0; x < w; x++){

<filter code> } }

#pragma acc update self(out[starty*step:blocksize*step]) async(queue)

queue = (queue%3)+1;

}

#pragma acc wait

} }

Set the device number, all work

will be sent to this device.

Wait for all work to complete

(per device)

Use multiple queues per device

to get copy compute overlap

29

Multi-GPU Pipeline Profile

30

Step-by-Step Performance

1.00X

1.93X

2.71X

3.28X

0.00X

0.50X

1.00X

1.50X

2.00X

2.50X

3.00X

3.50X

4.00X

1 GPU 2 GPUs 3 GPUs 4 GPUs

S
p
e
e
d
-u

p
 f

ro
m

 s
in

g
le

 G
P
U

Source: PGI 16.10, NVIDIA Tesla K40

31

Where to find OpenACC help

• OpenACC Course Recordings - https://developer.nvidia.com/openacc-courses

• PGI Website - http://www.pgroup.com/resources

• OpenACC on StackOverflow - http://stackoverflow.com/questions/tagged/openacc

• OpenACC Toolkit - http://developer.nvidia.com/openacc-toolkit

• Parallel Forall Blog - http://devblogs.nvidia.com/parallelforall/

• GPU Technology Conference - http://www.gputechconf.com/

• OpenACC Website - http://openacc.org/

https://developer.nvidia.com/openacc-courses
http://www.pgroup.com/resources
http://stackoverflow.com/questions/tagged/openacc
http://developer.nvidia.com/openacc-toolkit
http://devblogs.nvidia.com/parallelforall/
http://www.gputechconf.com/
http://openacc.org/

32

Free Qwiklabs

1. Create an account with NVIDIA qwikLABS
https://developer.nvidia.com/qwiklabs-
signup

2. Enter a promo code JEFF_LARKIN before
submitting the form

3. Free credits will be added to your account

4. Start using taking labs!

https://developer.nvidia.com/qwiklabs-signup

33

Free Qwiklab Quests

Email me if you
run out of credits,
I can always get

you more!

34

Looking for a summer
internship? Go to

www.nvidia.com, look for
Careers at the bottom of the

page.

http://www.nvidia.com/
http://www.nvidia.com/object/universityrecruiting-internships.html

