OpenACC Pipelining

Jeff Larkin <jlarkin@nvidia.com>, November 18, 2016

OVIDIA.

Asynchronous Programming

Programming multiple operations without immediate synchronization

Real World Examples:

- Cooking a Meal: Boiling potatoes while preparing other parts of the dish.
- Three students working on a project on George Washington, one researches his early life, another his military career, and the third his presidency.
- Automobile assembly line: each station adds a different part to the car until it is finally assembled.

Asynchronous OpenACC

So far, all OpenACC directives have been synchronous with the host

- Host waits for the parallel loop to complete
- Host waits for data updates to complete

Most OpenACC directives can be made asynchronous

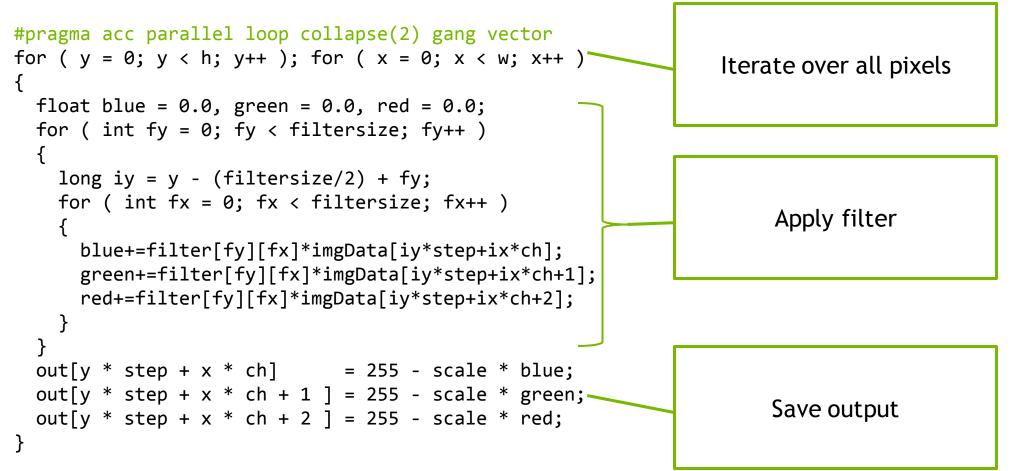
- Host issues multiple parallel loops to the device before waiting
- Host performs part of the calculation while the device is busy
- Data transfers can happen before the data is needed

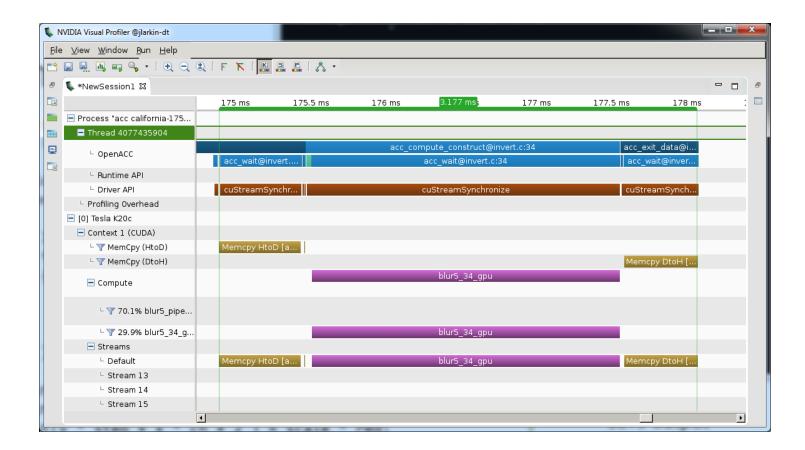
Asynchronous Pipelining

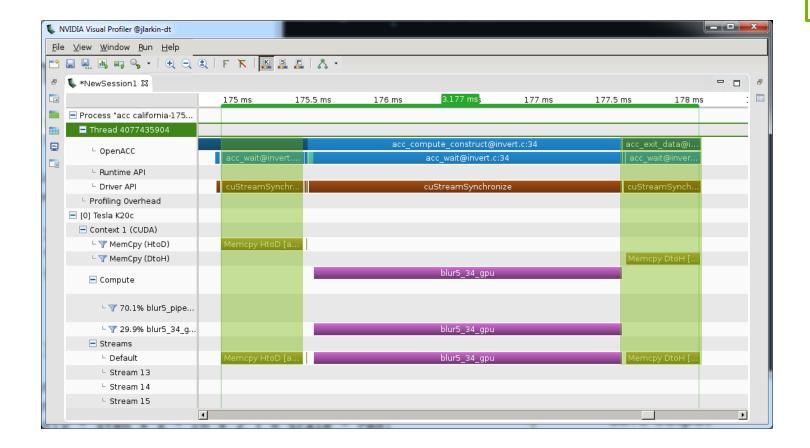
- Very large operations may frequently be broken into smaller parts that may be performed independently.
- Pipeline Stage A single step, which is frequently limited to 1 part at a time

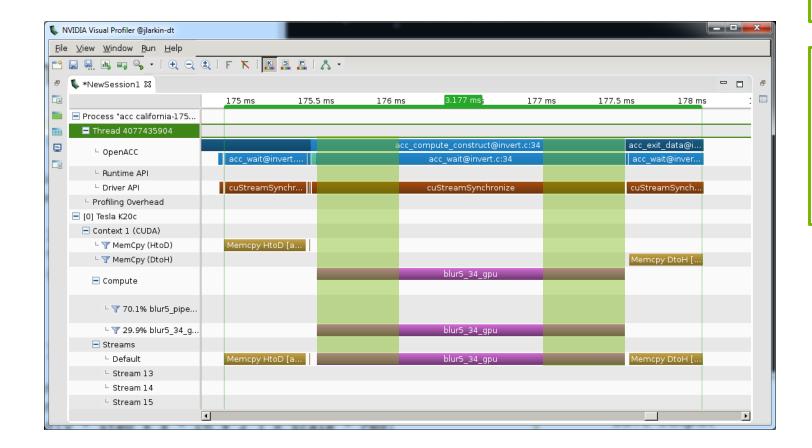
Photo by Roger Wollstadt, used via Creative Commons

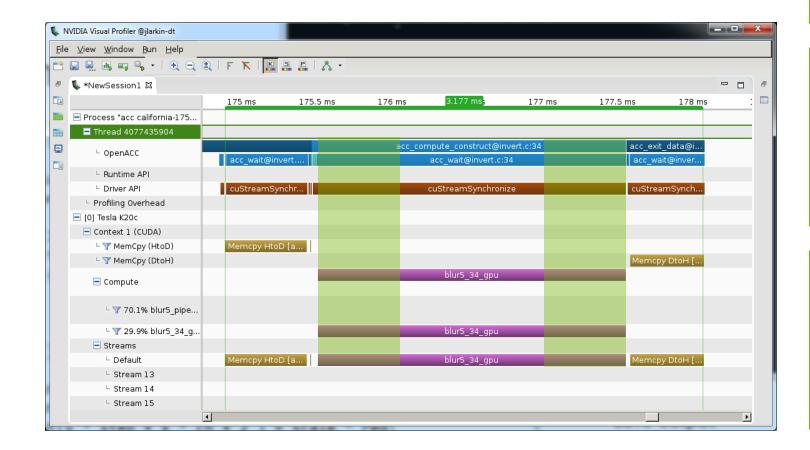
Case Study: Image Filter


The example code reads an image from a file, applies a simple filter to the image, then outputs the file.


Skills Used:


- Parallelize the filter on the GPU
- Data Region and Update Directive
- Async and Wait directives
- Pipelining

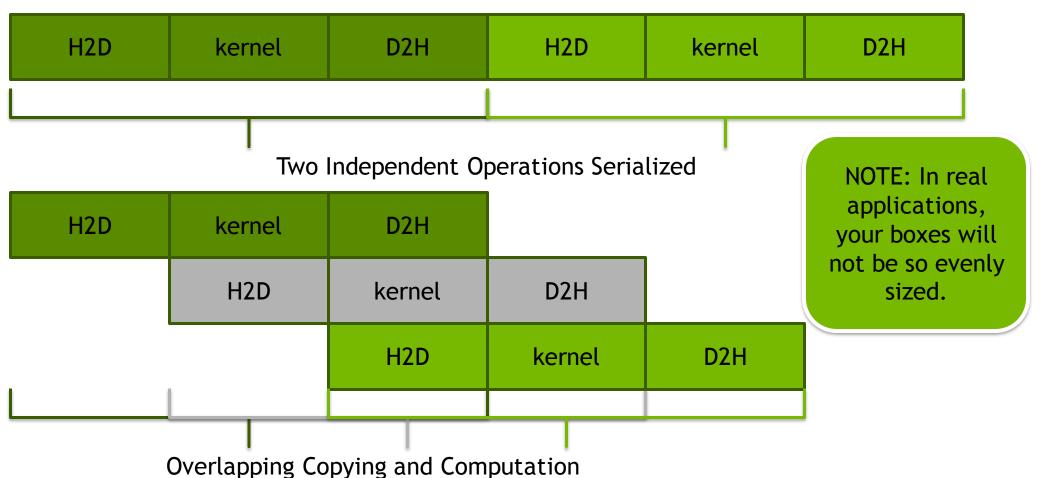

Image Filter Code



Roughly 1/3 of the runtime is occupied with data transfers.

Roughly 1/3 of the runtime is occupied with data transfers.

What if we could overlap the copies with the computation?



Roughly 1/3 of the runtime is occupied with data transfers.

What if we could overlap the copies with the computation?

<u>Rough Math:</u> 3.2ms - .5ms - .5ms = 2.2 ms 3.2 / 2.2 ~= 1.45X

Pipelining Data Transfers

11 💿 NVIDIA

Blocking the Code

Before we can overlap data transfers with computation, we need to break our work into smaller chunks.

Since each pixel is calculated independently, the work can be easily divided.

We'll divide along chunks of rows for convenience.

Blocked Image Filter Code

```
#pragma acc data copyin(imgData[:w*h*ch],filter)
                 copyout(out[:w*h*ch])
for ( long blocky = 0; blocky < nblocks; blocky++){</pre>
  long starty = blocky * blocksize;
  long endy = starty + blocksize;
#pragma acc parallel loop collapse(2) gang vector
 for (y=starty; y<endy; y++); for(x=0; x<w; x++ ) {</pre>
    float blue = 0.0, green = 0.0, red = 0.0;
    for ( int fy = 0; fy < filtersize; fy++ ) {
      long iy = y - (filtersize/2) + fy;
      for ( int fx = 0; fx < filtersize; fx++ ){
        long ix = x - (filtersize/2) + fx;
        blue+=filter[fy][fx]*imgData[iy*step+ix*ch];
        green+=filter[fy][fx]*imgData[iy*step+ix*ch+1];
        red+=filter[fy][fx]*imgData[iy*step+ix*ch+2];
    out[y*step+x*ch] = 255 - (scale * blue);
    out[y*step+x*ch+1] = 255 - (scale * green);
    out[y*step+x*ch+2] = 255 - (scale * red);
```

1. Add blocking loop

Blocked Image Filter Code

```
#pragma acc data copyin(imgData[:w*h*ch],filter)
                 copyout(out[:w*h*ch])
for ( long blocky = 0; blocky < nblocks; blocky++){</pre>
 long starty = blocky * blocksize;
 long endy = starty + blocksize;
#pragma acc parallel loop collapse(2) gang vector
 for (y=starty; y<endy; y++); for(x=0; x<w; x+(x) {
   float blue = 0.0, green = 0.0, red = 0.0;
    for ( int fy = 0; fy < filtersize; fy++ ) {</pre>
      long iy = y - (filtersize/2) + fy;
      for ( int fx = 0; fx < filtersize; fx++ ){
        long ix = x - (filtersize/2) + fx;
        blue+=filter[fy][fx]*imgData[iy*step+ix*ch];
        green+=filter[fy][fx]*imgData[iy*step+ix*ch+1];
        red+=filter[fy][fx]*imgData[iy*step+ix*ch+2];
    out[y*step+x*ch] = 255 - (scale * blue);
    out[y*step+x*ch+1] = 255 - (scale * green);
   out[y*step+x*ch+2] = 255 - (scale * red);
```

1. Add blocking loop

2. Adjust "y" to only iterate through rows within a single chunk.

Blocked Image Filter Code

3. Data region to handle copies

```
#pragma acc data copyin(imgData[:w*h*ch],filter)
                 copyout(out[:w*h*ch])
for ( long blocky = 0; blocky < nblocks; blocky++){</pre>
 long starty = blocky * blocksize;
 long endy = starty + blocksize;
#pragma acc parallel loop collapse(2) gang vector
 for (y=starty; y<endy; y++); for(x=0; x<w; x+(x) {
   float blue = 0.0, green = 0.0, red = 0.0;
    for ( int fy = 0; fy < filtersize; fy++ ) {</pre>
      long iy = y - (filtersize/2) + fy;
      for ( int fx = 0; fx < filtersize; fx++ ){
        long ix = x - (filtersize/2) + fx;
        blue+=filter[fy][fx]*imgData[iy*step+ix*ch];
        green+=filter[fy][fx]*imgData[iy*step+ix*ch+1];
        red+=filter[fy][fx]*imgData[iy*step+ix*ch+2];
    out[y*step+x*ch] = 255 - (scale * blue);
    out[y*step+x*ch+1] = 255 - (scale * green);
    out[y*step+x*ch+2] = 255 - (scale * red);
```

1. Add blocking loop

2. Adjust "y" to only iterate through rows within a single chunk.

GPU Timeline Blocked

🔍 NVIDIA Visual Profiler @jlarkin-dt	
<u>F</u> ile <u>V</u> iew <u>W</u> indow <u>R</u> un <u>H</u> elp	
🖶 🕻 *NewSession1 🕱 🗖	
Image:	Compute korreal is
E Process "acc california-175	Compute kernel is
🔠 🖻 Thread 531610624	-
Image: Proper ACC er_data@invert.c:76 acc_co accc_co acc_co	now broken in 8
Le Runtime API	مراجع الم
L Driver API CuStream Synchr cuStrea	blocks.
L Profiling Overhead	
🖃 [0] Tesla K20c	
Context 1 (CUDA)	
└ 𝔐 MemCpy (HtoD) Memcpy HtoD [a	
Memcpy (DtoH) Memcpy DtoH	
Compute	Data transfers still
- ▼ 52.5% blur5_pipe	
└ \ 25.1% blur5_bloc blur5_b blur5_b blur5_b blur5_b blur5_b blur5_b blur5_b blur5_b	happen at
⊢ 🝸 22.4% blur5_34_g	
Streams	beginning and end.
Lefault Memcpy HtoD [a blur5_b	
L Stream 13	1
Stream 14	

OpenACC Update Directive

Programmer specifies an array (or part of an array) that should be refreshed within a data region. (Host and Device copies are made coherent)

```
do_something_on_device()
!$acc update host(a)
do_something_on_host()
!$acc update device(a)

Copy "a" from CPU to
Copy "a" f
```

Note: Update "host" has been deprecated and renamed "self"

Change data clauses to create

Blocked Update Code

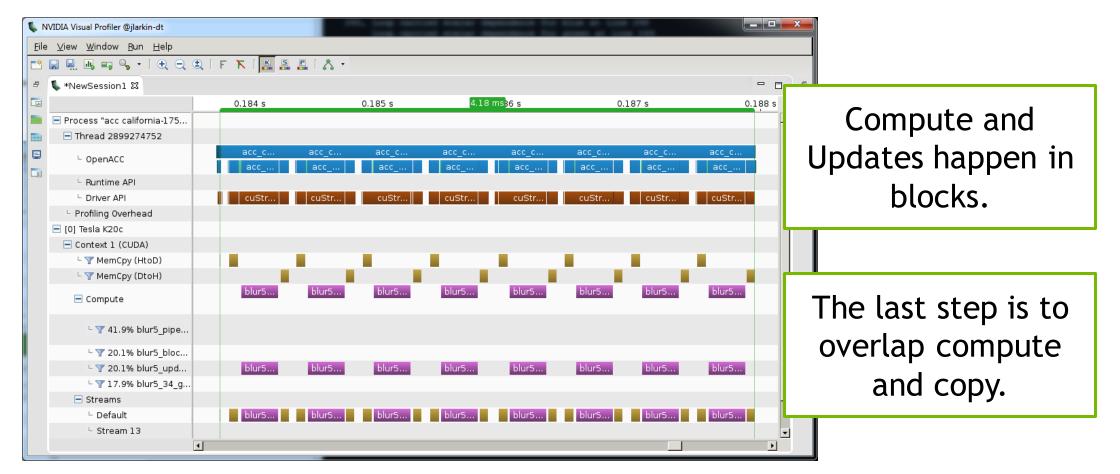
```
#pragma acc data create(imgData[w*h*ch],out[w*h*ch]
                 copyin(filter)
for ( long blocky = 0; blocky < nblocks; blocky++)</pre>
  long starty = MAX(0,blocky * blocksize - filtersize/2);
 long endy = MIN(h,starty + blocksize + filtersize/2);
#pragma acc update device(imgData[starty*step:(endy-starty)*step])
  starty = blocky * blocksize;
 endy = starty + blocksize;
#pragma acc parallel loop collapse(2) gang vector
 for (y=starty; y<endy; y++) for ( x=0; x<w; x++ ) {
    <filter code ommitted>
    out[y * step + x * ch] = 255 - (scale * blue);
    out[y * step + x * ch + 1 ] = 255 - (scale * green);
   out[y * step + x * ch + 2] = 255 - (scale * red);
  }
#pragma acc update self(out[starty*step:blocksize*step])
```

Change data clauses to create

Blocked Update Code

```
#pragma acc data create(imgData[w*h*ch],out[w*h*ch]
                 copyin(filter)
for ( long blocky = 0; blocky < nblocks; blocky++)</pre>
  long starty = MAX(0,blocky * blocksize - filtersize/2);
 long endy = MIN(h,starty + blocksize + filtersize/2);
#pragma acc update device(imgData[starty*step:(endy-starty)*step])
  starty = blocky * blocksize;
 endy = starty + blocksize;
#pragma acc parallel loop collapse(2) gang vector
 for (y=starty; y<endy; y++) for ( x=0; x<w; x++ ) {
    <filter code ommitted>
    out[y * step + x * ch] = 255 - (scale * blue);
    out[y * step + x * ch + 1 ] = 255 - (scale * green);
   out[y * step + x * ch + 2] = 255 - (scale * red);
  }
#pragma acc update self(out[starty*step:blocksize*step])
```

Update data one block at a time.


Change data clauses to create

time.

Blocked Update Code

```
#pragma acc data create(imgData[w*h*ch],out[w*h*ch]
                 copyin(filter)
for ( long blocky = 0; blocky < nblocks; blocky++)</pre>
  long starty = MAX(0,blocky * blocksize - filtersize/2);
 long endy = MIN(h,starty + blocksize + filtersize/2);
                                                                      Update data one block at a
#pragma acc update device(imgData[starty*step:(endy-starty)*step])
  starty = blocky * blocksize;
 endy = starty + blocksize;
#pragma acc parallel loop collapse(2) gang vector
 for (y=starty; y<endy; y++) for ( x=0; x<w; x++ ) {
    <filter code ommitted>
   out[y * step + x * ch] = 255 - (scale * blue);
   out[y * step + x * ch + 1 ] = 255 - (scale * green);
   out[y * step + x * ch + 2] = 255 - (scale * red);
                                                                 Copy results back one block
#pragma acc update self(out[starty*step:blocksize*step])
                                                                          at a time.
```

GPU Timeline Blocked Updates

OpenACC async and wait

async(n): launches work asynchronously in queue n

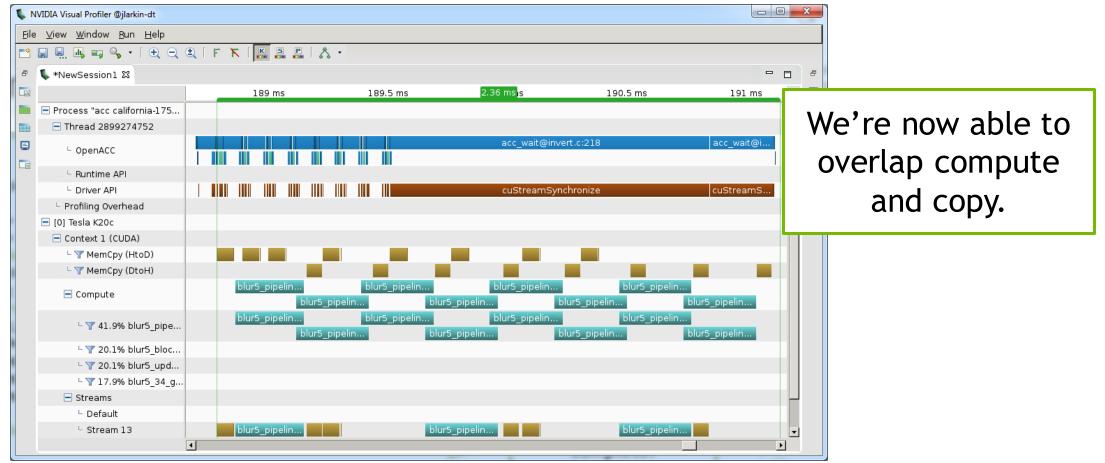
wait(n): blocks host until all operations in queue n have completed

Work queues operate in-order, serving as a way to express dependencies.

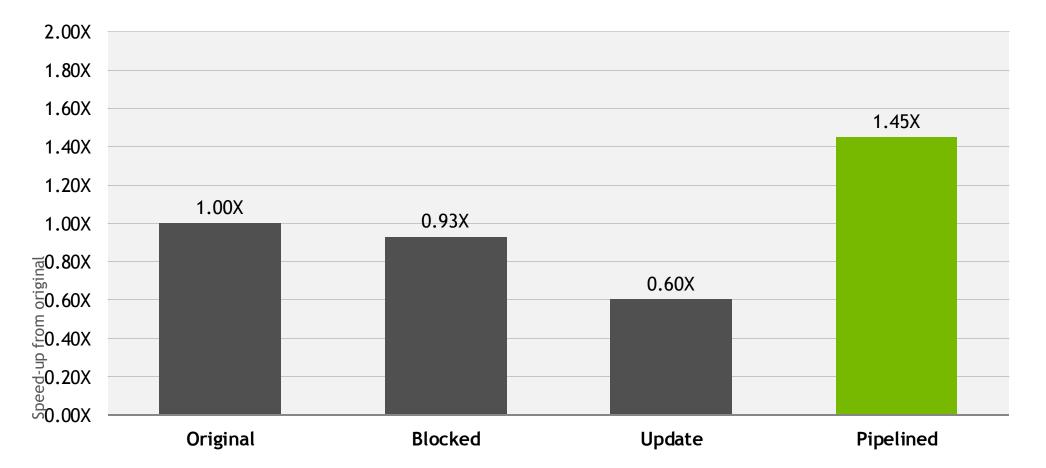
Work queues of different numbers may (or may not) run concurrently.

```
#pragma acc parallel loop async(1)
...
#pragma acc parallel loop async(1)
for(int i=0; i<N; i++)
...
#pragma acc wait(1)
for(int i=0; i<N; i++)</pre>
```

If *n* is not specified, *async* will go into a default queue and *wait* will wait all previously queued work.


Pipelined Code

```
#pragma acc data create(imgData[w*h*ch],out[w*h*ch])
                 copyin(filter)
                                                                              Cycle between 3 async
for ( long blocky = 0; blocky < nblocks; blocky++)</pre>
                                                                                queues by blocks.
 long starty = MAX(0,blocky * blocksize - filtersize/2);
 long endy = MIN(h,starty + blocksize + filtersize/2);
#pragma acc update device(imgData[starty*step:(endy-starty)*step]) async(block%3+1)
 starty = blocky * blocksize;
 endy = starty + blocksize;
#pragma acc parallel loop collapse(2) gang vector async(block%3+1)
 for (y=starty; y<endy; y++) for ( x=0; x<w; x++ ) {
   <filter code ommitted>
   out[y * step + x * ch] = 255 - (scale * blue);
   out[y * step + x * ch + 1 ] = 255 - (scale * green);
   out[y * step + x * ch + 2] = 255 - (scale * red);
#pragma acc update self(out[starty*step:blocksize*step]) async(block%3+1)
#pragma acc wait
```

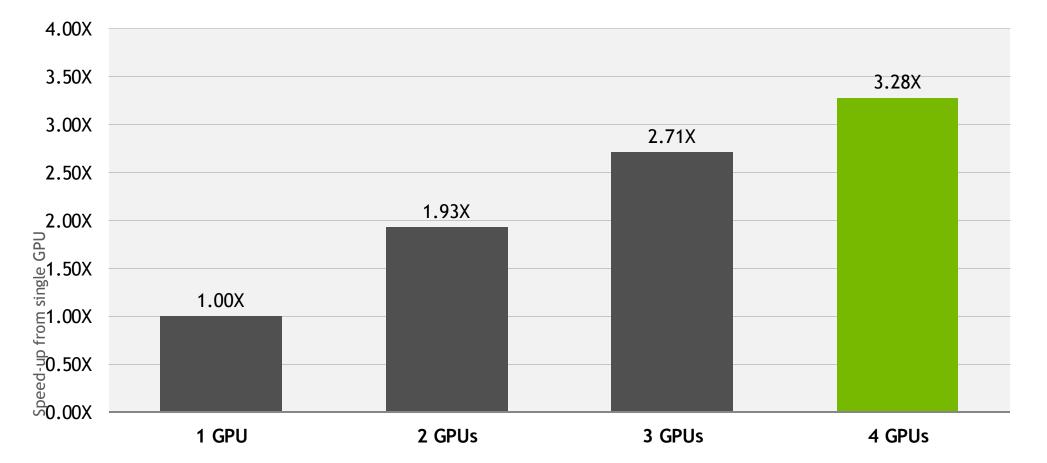

Pipelined Code

```
#pragma acc data create(imgData[w*h*ch],out[w*h*ch])
                 copyin(filter)
                                                                              Cycle between 3 async
for ( long blocky = 0; blocky < nblocks; blocky++)</pre>
                                                                                queues by blocks.
 long starty = MAX(0,blocky * blocksize - filtersize/2);
 long endy = MIN(h,starty + blocksize + filtersize/2);
#pragma acc update device(imgData[starty*step:(endy-starty)*step]) async(block%3+1)
 starty = blocky * blocksize;
 endy = starty + blocksize;
#pragma acc parallel loop collapse(2) gang vector async(block%3+1)
 for (y=starty; y<endy; y++) for ( x=0; x<w; x++ ) {
   <filter code ommitted>
   out[y * step + x * ch] = 255 - (scale * blue);
   out[y * step + x * ch + 1 ] = 255 - (scale * green);
   out[y * step + x * ch + 2] = 255 - (scale * red);
                                                                               Wait for all blocks to
#pragma acc update self(out[starty*step:blocksize*step]) async(block%3+1)
                                                                                    complete.
#pragma acc wait
```

GPU Timeline Pipelined

Step-by-Step Performance

Multi-GPU Pipelining


Multi-GPU OpenACC with OpenMP

```
#pragma omp parallel num threads(acc get num devices(acc device nvidia))
                                                                        Set the device number, all work
    int myid = omp get thread num();
    acc set device num(myid, acc device nvidia);
                                                                            will be sent to this device.
    int queue = 1;
#pragma acc data create(imgData[w*h*ch],out[w*h*ch])
#pragma omp for schedule(static)
 for ( long blocky = 0; blocky < nblocks; blocky++)</pre>
    // For data copies we need to include the ghost zones for the filter
                                                                                 Use multiple queues per device
   long starty = MAX(0,blocky * blocksize - filtersize/2);
    long endy = MIN(h,starty + blocksize + filtersize/2);
                                                                                   to get copy compute overlap
#pragma acc update device(imgData[starty*step:(endy-starty)*step]) async(queue)
    starty = blocky * blocksize;
    endy = starty + blocksize;
#pragma acc parallel loop collapse(2) gang vector async(queue)
    for (long y = \text{starty}; y < \text{end}y; y++) { for (long x = 0; x < w; x++) {
       <filter code>
                       • • •
#pragma acc update self(out[starty*step:blocksize*step]) async(queue)
    queue = (queue %3) + 1;
                                                                          Wait for all work to complete
#pragma acc wait
                                                                                     (per device)
 } }
```

Multi-GPU Pipeline Profile

5	NVIDIA Visual Profiler		_					x
<u>F</u> ile	e <u>V</u> iew <u>W</u> indow <u>R</u> un <u>H</u> elp			P 8 _				
			2 2 F K 🛄 📮 🛛					
8	🔍 *multi.nvprof 🔀	1					- 8	8
		B ms	2213.5 ms	2214 ms	2214.5 ms	2215 ms	2215.5 ms	
E	Process "filter.x 31027750076_87.							
	📃 [0] Tesla K40m							
	Context 1 (CUDA)			_				
	🗕 🍸 MemCpy (HtoD)				_			
	🗕 🍸 MemCpy (DtoH)		_	_	_	_		
	+ Compute	blur5_pip	e blur5_pipeli blur5_pipeli	blur5_pipeli blur5_pipeli	blur5_pipel blur5_pipeli	i blur5_pipeli		
	Streams							
	💻 [1] Tesla K40m							
	Context 3 (CUDA)							
	🗆 🍸 MemCpy (HtoD)							
	🗕 🍸 MemCpy (DtoH)							
	+ Compute	blur5_	pipel blur5_pi blur5_pipeli	peli blur5_pi blur5_pipeli	peli blur5_p blur5_pipeli	ipeli blur5_pipeli		
	+ Streams							
	📃 [2] Tesla K40m							
	Context 2 (CUDA)							
	占 🍸 MemCpy (HtoD)		Memc	Memcp				
	🗕 🍸 MemCpy (DtoH)							
	+ Compute		blur5_pipel blur5_pipeli	blur5_pipel blur5_pipeli.	blur5_pipeli blur5_pipeli	blur5_pipeli i blur5_pipeli		
	🛨 Streams							
	RI Tarla Kilom	4						-

Step-by-Step Performance

Where to find OpenACC help

- OpenACC Course Recordings <u>https://developer.nvidia.com/openacc-courses</u>
- PGI Website <u>http://www.pgroup.com/resources</u>
- OpenACC on StackOverflow <u>http://stackoverflow.com/questions/tagged/openacc</u>
- OpenACC Toolkit <u>http://developer.nvidia.com/openacc-toolkit</u>
- Parallel Forall Blog <u>http://devblogs.nvidia.com/parallelforall/</u>
- GPU Technology Conference <u>http://www.gputechconf.com/</u>
- OpenACC Website <u>http://openacc.org/</u>

Free Qwiklabs

- 1. Create an account with NVIDIA qwikLABS <u>https://developer.nvidia.com/qwiklabs-</u>signup
- 2. Enter a promo code JEFF_LARKIN before submitting the form
- 3. Free credits will be added to your account
- 4. Start using taking labs!

→ C A https://developer.nvidia.com/qwiklabs-signup

🗞 NVIDIA ACCELERATED COMPUTING Downloads Training Ecosystem Forums

Home > ComputeWorks > CUDA ZONE > Education & Training > NVIDIA qwikLABS Sign Up

NVIDIA qwikLABS Sign Up

Sign-up for hands-on training in the cloud! Just requires a browser to access a wide range of GPU-Accelerated selfpaced labs. If you sign-up using this form, you will receive confirmation of account creation including free credits within 1 business day. Existing users with a promo code will receive free credits automatically added to their account.

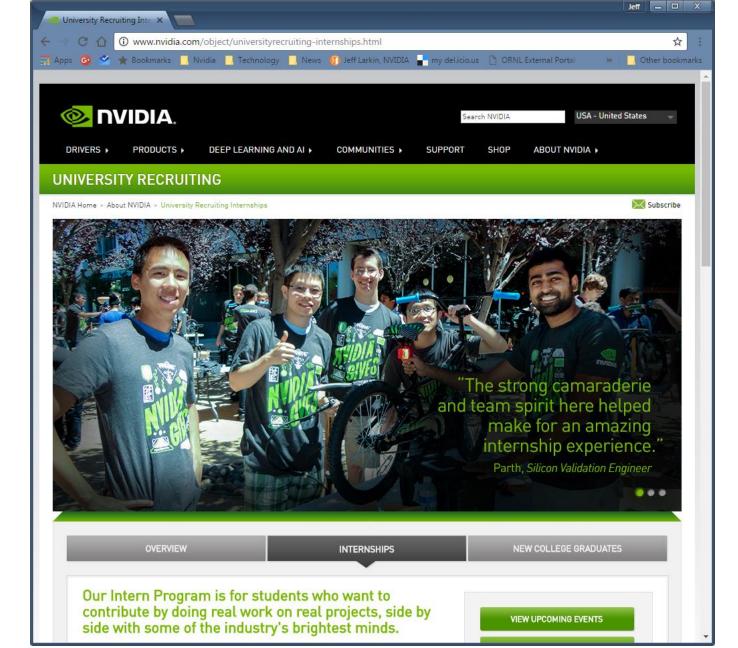
Questions? Email to cuda-cloud@nvidia.com

Name	e (First,Last) * *						
Juli	ia	Levites					
Conta	act Email *						
ope	enacc@nvidia.com						
Orgai	nization *						
NVI	IDIA						
Coun	try *						
0	United Arab Emirates						
0	United Kingdom						
0	United States						
0	United States Minor O	utlying Islands					
0	Uruguay					•	•
Acce	pt NVIDIA privacy policy	(*					
							į
•	Yes						
0	No						

Accept qwikLAB privacy policy *

🝳 Yes	
No	
OMO CODE *	

Free Qwiklab Quests


QUESTS (6)

LABS (24)

Quests are a series of labs organized by technologies, specific services, or particular use cases. There's no need to complete an entire Quest in a single sitting, but by completing each individual lab in a Quest you can earn badges that reflect your newly acquired skills. Come back often as we continue to expand our catalog of Quests.

	QUEST TITLE	SUBJECT	NO. OF LABS	COST	TIME TO COMPLETE
C/C++ Cetting Statist	C/C++ Getting Started	Languages	5 Labs	40 Credits	5h 42m
Pythan Grifing Started	Python Getting Started	Languages	3 Labs	30 Credits	1h 48m
Saturd	Fortran Getting Started	Languages	4 Labs	25 Credits	4h 19m
Librarias C/C++	Libraries C/C++	Technologies	3 Labs	40 Credits	4h 9m
CUDA C/C++	CUDA C/C++	Technologies	3 Labs	45 Credits	4h 39m
OpenACC	OpenACC	Technologies	6 Labs	70 Credits	8h 33m

Email me if you run out of credits, I can always get you more!

Looking for a summer internship? Go to <u>www.nvidia.com</u>, look for <u>Careers</u> at the bottom of the page.