
Jeff Larkin <jlarkin@nvidia.com>, November 14, 2016

GPU Fundamentals



2

Who Am I?

2002 – B.S. Computer Science – Furman University

2005 – M.S. Computer Science – UT Knoxville

2002 – Graduate Teaching Assistant

2005 – Graduate Research Assistant (ICL)

2005 – 2013 – Cray, Inc

Worked on porting & optimizing HPC apps @ ORNL, User Training

2013 – Present – NVIDIA Corp.

Porting & optimizing HPC apps @ ORNL , User Training, 

Representative to OpenACC & OpenMP



3

AGENDA

GPU Architecture

Speed v. Throughput

Latency Hiding

Memory Coalescing

SIMD v. SIMT



7

GPU Architecture

Global memory

Analogous to RAM in a CPU server

Accessible by both GPU and CPU

Currently up to 16 GB in Tesla products

Streaming Multiprocessors (SM)

Perform the actual computation

Each SM has its own: Control units, registers, execution pipelines, caches

Two Main Components



8

GPU Architecture

Many CUDA Cores per SM

Architecture dependent

Special-function units

cos/sin/tan, etc.

Shared memory + L1 cache

Thousands of 32-bit registers

Streaming Multiprocessor (SM)



9

GPU Architecture

Floating point & Integer unit

IEEE 754-2008 floating-point 
standard

Fused multiply-add (FMA) 
instruction for both single and 
double precision

Logic unit

Move, compare unit

Branch unit

CUDA Core

CUDA Core
Dispatch Port

Operand Collector

Result Queue

FP Unit INT Unit



10

Software Hardware

Threads are executed by scalar processors

Thread

Scalar 

Processor

Thread 

Block Multiprocessor

Thread blocks are executed on multiprocessors

Thread blocks do not migrate

Several concurrent thread blocks can reside on one 

multiprocessor - limited by multiprocessor 

resources (shared memory and register file)

...

Grid Device

A kernel is launched as a grid of thread blocks

Execution Model



11

Thread 

Block Multiprocessor

32 Threads

32 Threads

32 Threads

...

Warps

A thread block consists of 

32-thread warps

A warp is executed 

physically in parallel 

(SIMT) on a multiprocessor

=

Warps



12

GPU Memory Hierarchy Review

L2

Global Memory

Registers

L1

SM-N

SMEM

Registers

L1

SM-0

SMEM

Registers

L1

SM-1

SMEM



13

GPU Architecture

Extremely fast, but small, i.e., 10s of Kb

Programmer chooses whether to use cache as L1 or Shared Mem

L1

Hardware-managed—used for things like register spilling

Should NOT attempt to utilize like CPU caches

Shared Memory—programmer MUST synchronize data accesses!!!

User-managed scratch pad

Repeated access to same data or multiple threads with same data

Memory System on each SM



14

GPU Architecture

Unified L2 cache (100s of Kb)

Fast, coherent data sharing across all cores in the GPU

Unified/Managed Memory

Since CUDA6 it’s possible to allocate 1 pointer (virtual address) whose physical 
location will be managed by the runtime.

Pre-Pascal GPUS – managed by software, limited to GPU memory size

Pascal & Beyond – Hardware can page fault to manage location, can oversubscribe 
GPU memory.

Memory system on each GPU board



15

Speed v. Throughput

Speed Throughput

*Images from Wikimedia Commons via Creative Commons

Which is better depends on your needs…



1616

CPU

 Optimized for low-latency access to 

cached data sets

 Control logic for out-of-order and 

speculative execution

 10’s of threads

Low Latency or High Throughput?

GPU

 Optimized for data-parallel, throughput 

computation

 Tolerant of memory latency

 More transistors dedicated to computation

 10,000’s of threads



17

Low Latency or High Throughput?

CPU architecture must minimize latency within each thread

GPU architecture hides latency with computation from other thread warps

GPU Stream Multiprocessor – High Throughput Processor

CPU core – Low Latency Processor Computation Thread/Warp

Tn Processing

Waiting for data

Ready to be processed

Context switchW1

W2

W3

W4

T1 T2 T3 T4



18

Memory Coalescing

Global memory access happens in 
transactions of 32 or 128 bytes

The hardware will try to reduce to 
as few transactions as possible

Coalesced access:

A group of 32 contiguous threads 
(“warp”) accessing adjacent words

Few transactions and high utilization

Uncoalesced access:

A warp of 32 threads accessing 
scattered words

Many transactions and low utilization

0 1 31

0 1 31



LD.128b

LD.128b

AD.128b

ST.128b

+

LD.

1

LD.

1

LD.

1
LD.

1

LD.

1

LD.

1

LD.

1
LD.

1

AD.

1

AD.

1

AD.

1
AD.

1

LD.

1

LD.

1

LD.

1
LD.

1

SIMD and SIMT

Single Instruction Multiple Data (SIMD)

• Vector instructions perform the same operation on 

multiple data elements.

• Data must be loaded and stored in contiguous 

buffers

Single Instruction Multiple 

Thread (SIMT)

• Scalar instructions execute 

simultaneously by multiple 

hardware threads

• Contiguous data not required.

+ + + +

19



LD.128b

LD.128b

AD.128b

ST.128b

+

LD.

1

LD.

1

LD.

1
LD.

1

LD.

1

LD.

1

LD.

1
LD.

1

AD.

1

AD.

1

AD.

1
AD.

1

LD.

1

LD.

1

LD.

1
LD.

1

SIMD and SIMT

Single Instruction Multiple Data (SIMD)

• Vector instructions perform the same operation on 

multiple data elements.

• Data must be loaded and stored in contiguous 

buffers

Single Instruction Multiple 

Thread (SIMT)

• Scalar instructions execute 

simultaneously by multiple 

hardware threads

• Contiguous data not required.

• So if something can run in 
SIMD, it can run in SIMT, but 

not necessarily the reverse.

• SIMT can better handle 

indirection

+ + + +

20



LD.128b

LD.128b

AD.128b

ST.128b

+

LD.

1

LD.

1

LD.

1
LD.

1

LD.

1

LD.

1

LD.

1
LD.

1

AD.

1

AD.

1

AD.

1
AD.

1

LD.

1

LD.

1

LD.

1
LD.

1

SIMD and SIMT

Single Instruction Multiple Data (SIMD)

• Vector instructions perform the same operation on 

multiple data elements.

• Data must be loaded and stored in contiguous 

buffers

• Either the programmer or the compiler must 

generate vector instructions

Single Instruction Multiple 

Thread (SIMT)

• Scalar instructions execute 

simultaneously by multiple 

hardware threads

• Contiguous data not required.

• So if something can run in 
SIMD, it can run in SIMT, but 

not necessarily the reverse.

• SIMT can better handle 

indirection

• The hardware enables 

parallel execution of scalar 

instructions

+ + + +

21



SIMD and SIMT Branching
SIMD

SIMT

1. Execute converged 

instructions

2. Generate vector 

mask for true

3. Execute masked 

vector instruction

4. Generate vector 
mask for false

5. Execute masked 

vector instruction

6. Continue to 

execute converged 

instructions

1. Execute converged 

instructions

2. Executed true 

branch

3. Execute false 

branch

4. Continue to 
execute converged 

instructions

Divergence (hopefully) handled by compiler 

through masks and/or gather/scatter 

operations.

Divergence handle by hardware through 

predicated instructions.
22



23

Next 2 Lectures

Wednesday – OpenACC Basics

Friday – More OpenACC?


