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SLATE: Software for Linear Algebra Targeting Exascale

• Distributed, GPU-accelerated, dense linear algebra library
– Target: Large-scale, multi-{GPU, core, memory}
– Modern replacement for ScaLAPACK 

• Functionality
– BLAS (matrix multiplies, triangular solves), norm, cond, ...
– Linear solves (Cholesky, Cholesky, symmetric indefinite)
– Least squares (QR, Cholesky QR, LQ)
– Hermitian eigenvalue, generalized Hermitian eigenvalue
– Singular value decomposition (SVD)
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ScaLAPACK 
• Dense linear algebra library
– First released in 1995
– Robust, highly tested package
– Asymptotically scalable
– CPU performance is still hard to beat
– De-facto standard, used by many vendors

• No clear path to GPU support

• Lessons for success
– Longevity due to a dependence on core features
– BLAS, LAPACK, PBLAS, BLACS / MPI
– Components that provide abstract matrix operations
– Vendors optimize these core components 



SLATE 
• Linear algebra based on tiled data - PLASMA library
– Shared memory, full data dependency (Aik:R, Bkj:R, Cij:RW)
– Initially used a static state transition table
– Moved to an internal DAG runtime QUARK
– Moved to OpenMP dependencies 
– Lessons …
• Static state tables are hard. Full DAGs are costly and can block task discovery. 

Standards can perform well.

• GPU work – MAGMA, 

• Distributed memory LA experience
– ScaLAPACK, HPL, Parsec/DPLASMA, various PhD projects with DAGs. 



Design of SLATE
§ Data tiling

§ Matrix – a “loose” collection of tiles
§ Any partitioning to nodes and devices

§ Dynamic tasking on nodes
§ OpenMP for managing tasks and dependencies

§ Batch-execution for performance
§ GPU: batch-BLAS / batch-GEMM
§ CPU: batch-BLAS or OpenMP	tasking
§ Provided	by		BLASPP++	CPU/GPU	wrappers

• Lookahead 
– Enabled by OpenMP data-dependence
– Enable future panel without waiting for update operation
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SLATE Matrix
• Map from matrix/tile indices { i, j, device } to Tile
– Map exists on all nodes
– Local storage for tiles at each location
– 2D block cyclic by default
• Any mapping possible

– Remote data is attached to map placeholder
– Tiles can be strided (leading dimension)
• Enables ScaLAPACK 2D block cyclic compatibility

– Accommodates band and block sparse
• No wasted memory space

• Distributed algorithms
• Remote tiles are communicated explicitly
• Have a natural place to store remote tiles
• Refer to remote tiles via known map indices



Multi-Level Tasking
• SLATE uses OpenMP as the local runtime scheduler

• Schedule aggregated-task using OpenMP dependencies
– Results in O(n/nb) dependency task graph

• Within the aggregated-tasks, schedule work on tiles 
without dependencies 
– Or Batch BLAS on GPUs or CPUs
– Either OpenMP nested parallelism on CPUS

• SLATE manages data movement (not the runtime)
– SLATE moves data between nodes using MPI multicast of 
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High-Level Algorithms 
• High-level algorithms are independent of architecture 

and data type
– For example, Cholesky/LU have one implementation,

use C++ templates for data type & target

• Low-level internal routines dispatch to target 
implementations
– internal::gemm has multiple target implementations:
• HostTask: nested OpenMP tasks
• Device: batched BLAS++ call on GPU 
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Batched BLAS in BLAS++
• SLATE algorithms expose parallelism by 

working on tiles of data

• But for GPUs, smaller tiles can have low 
performance

• Batched BLAS operations, implemented by 
GPU vendors, can extract high performance 
by batching/grouping operations on tiles of 
smaller sizes
– Batch routines take a set of matrices and perform 

the same operation on all in parallel

• In SLATE, the trailing matrix update
– Matrix-multiply of the panel block-column and a 

block-row to update the trailing matrix
Block outer-product matrix multiply, implemented as 
single gemm, batched gemm on tiles, or individual tile 
gemms in separate streams, on NVIDIA V100 GPU. 



Accelerator platforms
• Use BLAS++ as abstraction layer
– cuBLAS backend (done)
– hip/rocBLAS backend (done)
– oneAPI backend (mostly complete)

• A few memory-bound GPU kernels are implemented 
within SLATE. (batched add tiles, scale tiles, norms 
of tiles)
– Port to HIP using hipify (initial work done)
– Intel OneAPI port to OpenMP device-offload in progress



BLAS++ and LAPACK++
• Simple, data-type templated interface to CPU routines
– C++ wrappers around vendor optimized BLAS, LAPACK libraries

• BLAS++, LAPACK++ for GPU capabilities
– Portable calls in SLATE using device queues
• Supports batch-calls on device (batch-gemm, …)
• cuBLAS backend and hip/rocBLAS backend
• Intel OneAPI backend recently added backend

• LAPACK++ has some device routines 
– Solver queues and handles are similar to blas queues.

• Device memory management is done through BLAS++

• SLATE has very few memory-bound internal device kernels
– Matrix norm, set, add, copy, scale (CUDA , hipified)
– On SYCL we are using OpenMP device-offload for these kernels



Matrices are 
composed of tiles of 
data distributed over 
processes

Each node has
Map{i, j, device} to tile*

Panel

Lookahead
Update

Trailing Matrix
Update

... ... ...

Panel

Lookahead
Update

Trailing Matrix
Update

GPU Devices
device batch-BLAS 
for CUDA/HIP
(gemm, trsm, …)

0

1

0

2

3

2

0

1

0

1 3 1

2

3

2

3

Algorithms are 
expressed as matrix 
operations on the tiles

Data is 
copied/referenced in 
local matrix structures

SLATE aggregates operations using panel + 
lookahead (for overlapping/hiding) + update 
operations.
OpenMP manages dependencies between 
aggregated task-groups.

CPUs: nested 
OpenMP tasks 
call BLAS & 
LAPACK

Distributed, GPU-accelerated, dense linear algebra library. 
Modern replacement for ScaLAPACK.

https://icl.utk.edu/slate/
SLATE

https://icl.utk.edu/slate/


SLATE Coverage



Matrix Multiply and Cholesky on Summit
37x GPU speedup
53% of peak

47x GPU speedup
77% of peak

Summit: 16 nodes on Summit, 96 NVIDIA Volta V100 GPUs, 682 CPU cores, 
CPU+GPU peak 765 Tflop/s 

Single node GPU speedup similar: 50x for dgemm, 25x for dpotrf (limited problem size)



GEMM on Frontier



Cholesky on Frontier



Productivity: C++ Templates and Abstractions
• Extensive use of C++ templates

• Algorithmic variants

• Matrix object abstractions

• Simplified API for calls (e.g. 
gemm)

• Reduced code size

Simplified	API
q gemm	(alpha,	beta,	A,	B,	C)

Templates
q precisions

q float
q double
q std::complex<float>
q std::complex<double>

q targets
q Target::Host
q Target::Devices

Standard	Features
q inheritance
q overloading
q matrix	hierarchy

Algorithmic	variants
via	option	parameter
q Least	squares	dgels

q Householder	QR
q Cholesky	QR	

BaseMatrix

Matrix

BaseTrapezoidMatrix

TrapezoidMatrix

TriangularMatrix

SymmetricMatrix

HermitianMatrix

m × n

m × n

n × n

n × n

n × n



Cholesky example using SLATE 
// slate-tutorial linear_system_Cholesky.cc
template <typename scalar_type>
void test_cholesky()
{
    // MPI_Init_thread( &argc, &argv, MPI_THREAD_MULTIPLE, .. );
    int64_t n=1000, nrhs=100, nb=256, p=2, q=2;
    assert( mpi_size == p*q );
    slate::HermitianMatrix<scalar_type>
        A( slate::Uplo::Lower, n, nb, p, q, MPI_COMM_WORLD );
    slate::Matrix<scalar_type> 
        B( n, nrhs, nb, p, q, MPI_COMM_WORLD );
    A.insertLocalTiles();
    B.insertLocalTiles();
    random_matrix_diag_dominant( A );  // local support function
    random_matrix( B ); // local support function

    slate::potrf( A );
    slate::potrs( A, B );
}

L LT X = B

X = BA

SLATE APIs
• Native C++ API
• C API
• ScaLAPACK wrapper API



Availability
• SLATE icl.utk.edu/slate
– SLATE Github github.com/icl-utk-edu/slate
– BLAS++ github.com/icl-utk-edu/blaspp
– LAPACK++ github.com/icl-utk-edu/lapackpp
– TestSweeper github.com/icl-utk-edu/testsweeper
– Issue tracking & pull requests

• Modified BSD License

This research was supported by the Exascale 
Computing Project (17-SC-20-SC), a 
collaborative effort of the U.S. Department of 
Energy Office of Science and the National 
Nuclear Security Administration.
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Challenge: HPL on Frontier
• HPL is a distributed LU benchmark with lookahead and GPU support
– Thanks to AMD for providing source code to rocHPL
• https://github.com/ROCmSoftwarePlatform/rocHPL 

• HPL: 1.194 ExaFlops *1000*1000 / (9408 nodes * 4 GPU * 2 GCDs)
– At scale 15 TF/GCD!   (Theoretical peak 26.5 TF/GCD (double-precision))

• Change in Crusher/Frontier default thread binding reduced performance by 30%
– Frontier reserved 1st core for system use
– Needed to select all cores to fix binding (srun -S0)

• Carefully tuned code 
– Very specific binding of process-threads to hardware, block sizes, thread binding, oversubscription
– Allows very specific overlap of GPU and CPU work
• Panel done on the CPU using OpenMP threads

• Challenge: Make this hand-tuning happen automagically. 

https://github.com/ROCmSoftwarePlatform/rocHPL
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