
1

Tasking in the SLATE Dense
Linear Algebra Library

Asim YarKhan (ICL/UTK)
16th Scheduling for Large Scale Systems Workshop

University of Tennessee Knoxville
May 22-24, 2023

Mark
Gates

Asim
YarKhan

Dalal
Sukkari

Sébastien
Cayrols

Neil
Lindquist

Daniel
Bielich

Hartwig
Anzt

Kadir
Akbudak

Rabab
Al-omair

Ahmad
Abdelfattah

Anthony
Castaldo

Mohammed
Al Farhan

Ali
Charara

Jakub
Kurzak

Jack
Dongarra

SLATE: Software for Linear Algebra Targeting Exascale

• Distributed, GPU-accelerated, dense linear algebra library
– Target: Large-scale, multi-{GPU, core, memory}
– Modern replacement for ScaLAPACK

• Functionality
– BLAS (matrix multiplies, triangular solves), norm, cond, ...
– Linear solves (Cholesky, Cholesky, symmetric indefinite)
– Least squares (QR, Cholesky QR, LQ)
– Hermitian eigenvalue, generalized Hermitian eigenvalue
– Singular value decomposition (SVD)

ANL
Intel/HPE

ORNL
HPE/AMD

LBNL
HPE/AMD/NVIDIA

ORNL
IBM/NVIDIA

Summit

ScaLAPACK
• Dense linear algebra library
– First released in 1995
– Robust, highly tested package
– Asymptotically scalable
– CPU performance is still hard to beat
– De-facto standard, used by many vendors

• No clear path to GPU support

• Lessons for success
– Longevity due to a dependence on core features
– BLAS, LAPACK, PBLAS, BLACS / MPI
– Components that provide abstract matrix operations
– Vendors optimize these core components

SLATE
• Linear algebra based on tiled data - PLASMA library
– Shared memory, full data dependency (Aik:R, Bkj:R, Cij:RW)
– Initially used a static state transition table
– Moved to an internal DAG runtime QUARK
– Moved to OpenMP dependencies
– Lessons …
• Static state tables are hard. Full DAGs are costly and can block task discovery.

Standards can perform well.

• GPU work – MAGMA,

• Distributed memory LA experience
– ScaLAPACK, HPL, Parsec/DPLASMA, various PhD projects with DAGs.

Design of SLATE
§ Data tiling

§ Matrix – a “loose” collection of tiles
§ Any partitioning to nodes and devices

§ Dynamic tasking on nodes
§ OpenMP for managing tasks and dependencies

§ Batch-execution for performance
§ GPU: batch-BLAS / batch-GEMM
§ CPU: batch-BLAS or OpenMP	tasking
§ Provided	by		BLASPP++	CPU/GPU	wrappers

• Lookahead
– Enabled by OpenMP data-dependence
– Enable future panel without waiting for update operation

Panel

Lookahead
Update

Trailing Matrix
Update

...

Panel

Lookahead
Update

Trailing Matrix
Update

GPU Devices
device batch-BLAS
for CUDA, HIP,
OneAPI
(gemm, trsm, …)

CPUs: nested
OpenMP tasks
call BLAS &
LAPACK

SLATE Matrix
• Map from matrix/tile indices { i, j, device } to Tile
– Map exists on all nodes
– Local storage for tiles at each location
– 2D block cyclic by default
• Any mapping possible

– Remote data is attached to map placeholder
– Tiles can be strided (leading dimension)
• Enables ScaLAPACK 2D block cyclic compatibility

– Accommodates band and block sparse
• No wasted memory space

• Distributed algorithms
• Remote tiles are communicated explicitly
• Have a natural place to store remote tiles
• Refer to remote tiles via known map indices

Multi-Level Tasking
• SLATE uses OpenMP as the local runtime scheduler

• Schedule aggregated-task using OpenMP dependencies
– Results in O(n/nb) dependency task graph

• Within the aggregated-tasks, schedule work on tiles
without dependencies
– Or Batch BLAS on GPUs or CPUs
– Either OpenMP nested parallelism on CPUS

• SLATE manages data movement (not the runtime)
– SLATE moves data between nodes using MPI multicast of

sets-of-tiles

Lookahead
Update

Lookahead
Update

Panel

Panel

Trailing Matrix
Update

On CPU Host
Nested OpenMP
tasks calling BLAS

On GPU Devices
Batched BLAS

Tile operations

herkpotrf

trsm gemm

Trailing Matrix
Update

High-Level Algorithms
• High-level algorithms are independent of architecture

and data type
– For example, Cholesky/LU have one implementation,

use C++ templates for data type & target

• Low-level internal routines dispatch to target
implementations
– internal::gemm has multiple target implementations:
• HostTask: nested OpenMP tasks
• Device: batched BLAS++ call on GPU

...

Lookahead
Update

Lookahead
Update

Panel

Panel

Trailing Matrix
Update

On CPU Host
Nested OpenMP
tasks calling BLAS

On GPU Devices
Batched BLAS

Tile operations

herkpotrf

trsm gemm

Trailing Matrix
Update

Batched BLAS in BLAS++
• SLATE algorithms expose parallelism by

working on tiles of data

• But for GPUs, smaller tiles can have low
performance

• Batched BLAS operations, implemented by
GPU vendors, can extract high performance
by batching/grouping operations on tiles of
smaller sizes
– Batch routines take a set of matrices and perform

the same operation on all in parallel

• In SLATE, the trailing matrix update
– Matrix-multiply of the panel block-column and a

block-row to update the trailing matrix
Block outer-product matrix multiply, implemented as
single gemm, batched gemm on tiles, or individual tile
gemms in separate streams, on NVIDIA V100 GPU.

Accelerator platforms
• Use BLAS++ as abstraction layer
– cuBLAS backend (done)
– hip/rocBLAS backend (done)
– oneAPI backend (mostly complete)

• A few memory-bound GPU kernels are implemented
within SLATE. (batched add tiles, scale tiles, norms
of tiles)
– Port to HIP using hipify (initial work done)
– Intel OneAPI port to OpenMP device-offload in progress

BLAS++ and LAPACK++
• Simple, data-type templated interface to CPU routines
– C++ wrappers around vendor optimized BLAS, LAPACK libraries

• BLAS++, LAPACK++ for GPU capabilities
– Portable calls in SLATE using device queues
• Supports batch-calls on device (batch-gemm, …)
• cuBLAS backend and hip/rocBLAS backend
• Intel OneAPI backend recently added backend

• LAPACK++ has some device routines
– Solver queues and handles are similar to blas queues.

• Device memory management is done through BLAS++

• SLATE has very few memory-bound internal device kernels
– Matrix norm, set, add, copy, scale (CUDA , hipified)
– On SYCL we are using OpenMP device-offload for these kernels

Matrices are
composed of tiles of
data distributed over
processes

Each node has
Map{i, j, device} to tile*

Panel

Lookahead
Update

Trailing Matrix
Update

...

Panel

Lookahead
Update

Trailing Matrix
Update

GPU Devices
device batch-BLAS
for CUDA/HIP
(gemm, trsm, …)

0

1

0

2

3

2

0

1

0

1 3 1

2

3

2

3

Algorithms are
expressed as matrix
operations on the tiles

Data is
copied/referenced in
local matrix structures

SLATE aggregates operations using panel +
lookahead (for overlapping/hiding) + update
operations.
OpenMP manages dependencies between
aggregated task-groups.

CPUs: nested
OpenMP tasks
call BLAS &
LAPACK

Distributed, GPU-accelerated, dense linear algebra library.
Modern replacement for ScaLAPACK.

https://icl.utk.edu/slate/
SLATE

https://icl.utk.edu/slate/

SLATE Coverage

Matrix Multiply and Cholesky on Summit
37x GPU speedup
53% of peak

47x GPU speedup
77% of peak

Summit: 16 nodes on Summit, 96 NVIDIA Volta V100 GPUs, 682 CPU cores,
CPU+GPU peak 765 Tflop/s

Single node GPU speedup similar: 50x for dgemm, 25x for dpotrf (limited problem size)

GEMM on Frontier

Cholesky on Frontier

Productivity: C++ Templates and Abstractions
• Extensive use of C++ templates

• Algorithmic variants

• Matrix object abstractions

• Simplified API for calls (e.g.
gemm)

• Reduced code size

Simplified	API
q gemm	(alpha,	beta,	A,	B,	C)

Templates
q precisions

q float
q double
q std::complex<float>
q std::complex<double>

q targets
q Target::Host
q Target::Devices

Standard	Features
q inheritance
q overloading
q matrix	hierarchy

Algorithmic	variants
via	option	parameter
q Least	squares	dgels

q Householder	QR
q Cholesky	QR	

BaseMatrix

Matrix

BaseTrapezoidMatrix

TrapezoidMatrix

TriangularMatrix

SymmetricMatrix

HermitianMatrix

m × n

m × n

n × n

n × n

n × n

Cholesky example using SLATE
// slate-tutorial linear_system_Cholesky.cc
template <typename scalar_type>
void test_cholesky()
{
 // MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, ..);
 int64_t n=1000, nrhs=100, nb=256, p=2, q=2;
 assert(mpi_size == p*q);
 slate::HermitianMatrix<scalar_type>
 A(slate::Uplo::Lower, n, nb, p, q, MPI_COMM_WORLD);
 slate::Matrix<scalar_type>
 B(n, nrhs, nb, p, q, MPI_COMM_WORLD);
 A.insertLocalTiles();
 B.insertLocalTiles();
 random_matrix_diag_dominant(A); // local support function
 random_matrix(B); // local support function

 slate::potrf(A);
 slate::potrs(A, B);
}

L LT X = B

X = BA

SLATE APIs
• Native C++ API
• C API
• ScaLAPACK wrapper API

Availability
• SLATE icl.utk.edu/slate
– SLATE Github github.com/icl-utk-edu/slate
– BLAS++ github.com/icl-utk-edu/blaspp
– LAPACK++ github.com/icl-utk-edu/lapackpp
– TestSweeper github.com/icl-utk-edu/testsweeper
– Issue tracking & pull requests

• Modified BSD License

This research was supported by the Exascale
Computing Project (17-SC-20-SC), a
collaborative effort of the U.S. Department of
Energy Office of Science and the National
Nuclear Security Administration.

11

SLATE Developers’ Guide
Ali Charara
Mark Gates
Jakub Kurzak
Asim YarKhan
Jack Dongarra

Innovative Computing Laboratory

January 8, 2020

10

SLATE Users’ Guide
Mark Gates
Ali Charara
Jakub Kurzak
Asim YarKhan
Mohammed Al Farhan
Dalal Sukkari
Jack Dongarra

Innovative Computing Laboratory

July 7, 2020

https://icl.utk.edu/slate/
https://github.com/icl-utk-edu/slate/
https://github.com/icl-utk-edu/blaspp
https://github.com/icl-utk-edu/lapackpp/
https://github.com/icl-utk-edu/testsweeper/

Challenge: HPL on Frontier
• HPL is a distributed LU benchmark with lookahead and GPU support
– Thanks to AMD for providing source code to rocHPL
• https://github.com/ROCmSoftwarePlatform/rocHPL

• HPL: 1.194 ExaFlops *1000*1000 / (9408 nodes * 4 GPU * 2 GCDs)
– At scale 15 TF/GCD! (Theoretical peak 26.5 TF/GCD (double-precision))

• Change in Crusher/Frontier default thread binding reduced performance by 30%
– Frontier reserved 1st core for system use
– Needed to select all cores to fix binding (srun -S0)

• Carefully tuned code
– Very specific binding of process-threads to hardware, block sizes, thread binding, oversubscription
– Allows very specific overlap of GPU and CPU work
• Panel done on the CPU using OpenMP threads

• Challenge: Make this hand-tuning happen automagically.

https://github.com/ROCmSoftwarePlatform/rocHPL

21

