Tasking in the SLATE Dense Linear Algebra Library

Asim YarKhan (ICL/UTK)

16th Scheduling for Large Scale Systems Workshop University of Tennessee Knoxville May 22-24, 2023

Kadir

Jakub

Kurzak

Jack Dongarra

Mark Gates

Asim YarKhan

Dalal Sukkari

Sébastien Daniel Cayrols **Bielich**

Hartwig Lindquist Anzt

Neil

Ahmad Abdelfattah Akbudak

Mohammed Rabab Al Farhan Al-omair

Castaldo Charara

Anthony Ali

SLATE: Software for Linear Algebra Targeting Exascale

- Distributed, GPU-accelerated, dense linear algebra library
 - Target: Large-scale, multi-{GPU, core, memory}
 - Modern replacement for ScaLAPACK
- Functionality
 - BLAS (matrix multiplies, triangular solves), norm, cond, ...
 - Linear solves (Cholesky, Cholesky, symmetric indefinite)
 - Least squares (QR, Cholesky QR, LQ)
 - Hermitian eigenvalue, generalized Hermitian eigenvalue
 - Singular value decomposition (SVD)

ScaLAPACK

- Dense linear algebra library
 - First released in 1995
 - Robust, highly tested package
 - Asymptotically scalable
 - CPU performance is still hard to beat
 - De-facto standard, used by many vendors
- No clear path to GPU support
- Lessons for success
 - Longevity due to a dependence on core features
 - BLAS, LAPACK, PBLAS, BLACS / MPI
 - Components that provide abstract matrix operations

L -A

LA

L -A

- Vendors optimize these core components

SLATE

- Linear algebra based on tiled data PLASMA library
 - Shared memory, full data dependency (Aik:R, Bkj:R, Cij:RW)
 - Initially used a static state transition table
 - Moved to an internal DAG runtime QUARK
 - Moved to OpenMP dependencies
 - Lessons …
 - Static state tables are hard. Full DAGs are costly and can block task discovery. Standards can perform well.
- GPU work MAGMA,
- Distributed memory LA experience
 - ScaLAPACK, HPL, Parsec/DPLASMA, various PhD projects with DAGs.

MAGMA

PaRSEC

HPL

Design of SLATE

Data tiling

- Matrix a "loose" collection of tiles
- Any partitioning to nodes and devices
- Dynamic tasking on nodes
 - OpenMP for managing tasks and dependencies
- Batch-execution for performance
 - GPU: batch-BLAS / batch-GEMM
 - CPU: batch-BLAS or OpenMP tasking
 - Provided by BLASPP++ CPU/GPU wrappers
- Lookahead
 - Enabled by OpenMP data-dependence
 - Enable future panel without waiting for update operation

SLATE Matrix

- Map from matrix/tile indices { i, j, device } to Tile
 - Map exists on all nodes
 - Local storage for tiles at each location
 - 2D block cyclic by default
 - Any mapping possible
 - Remote data is attached to map placeholder
 - Tiles can be strided (leading dimension)
 - Enables ScaLAPACK 2D block cyclic compatibility
 - Accommodates band and block sparse
 - No wasted memory space
- Distributed algorithms
 - Remote tiles are communicated explicitly
 - Have a natural place to store remote tiles
 - · Refer to remote tiles via known map indices

Multi-Level Tasking

- SLATE uses OpenMP as the local runtime scheduler
- Schedule aggregated-task using OpenMP dependencies
 - Results in O(n/nb) dependency task graph
- Within the aggregated-tasks, schedule work on tiles *without* dependencies
 - Or Batch BLAS on GPUs or CPUs
 - Either OpenMP nested parallelism on CPUS
- SLATE manages data movement (not the runtime)
 - SLATE moves data between nodes using MPI multicast of sets-of-tiles

High-Level Algorithms

- High-level algorithms are independent of architecture and data type
 - For example, Cholesky/LU have one implementation, use C++ templates for data type & target
- Low-level internal routines dispatch to target implementations
 - internal::gemm has multiple target implementations:
 - HostTask: nested OpenMP tasks
 - Device: batched BLAS++ call on GPU

Batched BLAS in BLAS++

- SLATE algorithms expose parallelism by working on tiles of data
- But for GPUs, smaller tiles can have low performance
- Batched BLAS operations, implemented by GPU vendors, can extract high performance by batching/grouping operations on tiles of smaller sizes
 - Batch routines take a set of matrices and perform the same operation on all in parallel
- In SLATE, the trailing matrix update
 - Matrix-multiply of the panel block-column and a block-row to update the trailing matrix

Volta V100 GPU, 7.8 Tflop/s peak

Block outer-product matrix multiply, implemented as single gemm, batched gemm on tiles, or individual tile gemms in separate streams, on NVIDIA V100 GPU.

Accelerator platforms

- Use BLAS++ as abstraction layer
 - cuBLAS backend (done)
 - hip/rocBLAS backend (done)
 - oneAPI backend (mostly complete)
- A few memory-bound GPU kernels are within SLATE. (batched add tiles, scale tiles, norms of tiles)
 - Port to HIP using hipify (initial work done)
 - Intel OneAPI port to OpenMP device-offload in progress

- Simple, data-type templated interface to CPU routines
 C++ wrappers around vendor optimized BLAS, LAPACK libraries
- BLAS++, LAPACK++ for GPU capabilities
 - Portable calls in SLATE using device queues
 - Supports batch-calls on device (batch-gemm, ...)
 - cuBLAS backend and hip/rocBLAS backend
 - Intel OneAPI backend recently added backend
- LAPACK++ has some device routines
 - Solver queues and handles are similar to blas queues.
- Device memory management is done through BLAS++
- SLATE has very few memory-bound internal device kernels
 - Matrix norm, set, add, copy, scale (CUDA, hipified)
 - On SYCL we are using OpenMP device-offload for these kernels

SLATE

Matrices are composed of tiles of data distributed over processes

Each node has Map{i, j, device} to tile* Modern replacement for ScaLAPACK. https://icl.utk.edu/slate/ Rank 0 Rank 2 2 2 Rank 1 Rank 3

Algorithms are expressed as matrix operations on the tiles

Data is copied/referenced in local matrix structures

SLATE Coverage

BLAS, etc. (C = AB, ...)

	ScaLAPACK	SLATE
Level 1 PBLAS	~	X
Level 2 PBLAS	 	some
Level 3 PBLAS	~	~
Matrix norms	~	v
Test matrix generation	v	~

Linear systems (Ax = b)

	ScaLAPACK	SLATE
LU (partial pivoting)	 	
LU, band (pp)	 	✓
LU (non-pivoting)	×	✓
Cholesky	 	
Cholesky, band	 	
Symmetric Indefinite (Aasen)	×	✔ (CPU)
Mixed precision	×	~
Inverses (LU, Cholesky)	 	 Image: A start of the start of
Condition estimate	 	~

Least squares $(Ax \cong b)$ QR \checkmark LQ \checkmark Least squares solver \checkmark

SVD, eigenvalues ($A = U\Sigma V^{H}$, $Ax = \lambda x$)

SCALAPAUN SLATE		SLATE	
SVD	~	✓ (vectors 2023)	
Symmetric eigenvalues	 	 Image: A start of the start of	M
Generalized sym. eigenvalues	v	V	
Divide and conquer	🖌 (eig)	2023	
Polar decomposition (QDWH)	×	v	
Non-symmetric eigenvalues	parts	Post ECP	
	>ICL	TENNESSEE KNOXVILLE	11/1

Productivity: C++ Templates and Abstractions

- Extensive use of C++ templates
- Algorithmic variants
- Matrix object abstractions
- Simplified API for calls (e.g. gemm)
- Reduced code size

- std::complex<float>
- □ std::complex<double>

□ targets

Target::Host

□ Target::Devices

Algorithmic variants

via option parameter

- Least squares dgels
 - Householder QR
 - Cholesky QR

Simplified API

gemm (alpha, beta, A, B, C)

Standard Features

- □ inheritance
- overloading

matrix hierarchy

TENNE


```
В
// slate-tutorial linear_system_Cholesky.cc
template <typename scalar type>
void test cholesky()
                                                                                        В
    // MPI Init thread( &argc, &argv, MPI THREAD MULTIPLE, .. );
    int64 t n=1000, nrhs=100, nb=256, p=2, q=2;
    assert( mpi size == p*q );
    slate::HermitianMatrix<scalar type>
        A( slate::Uplo::Lower, n, nb, p, q, MPI COMM WORLD );
    slate::Matrix<scalar type>
                                                                     SLATE APIs
        B( n, nrhs, nb, p, q, MPI COMM WORLD );

    Native C++ API

    A.insertLocalTiles();

    CAPI

    B.insertLocalTiles();

    ScaLAPACK wrapper API

    random_matrix_diag_dominant( A ); // local support function
    random matrix( B ); // local support function
    slate::potrf( A );
    slate::potrs( A, B );
}
```

TENNE

Availability

- SLATE icl.utk.edu/slate
 - SLATE Github github.com/icl-utk-edu/slate
 - BLAS++ github.com/icl-utk-edu/blaspp
 - LAPACK++ github.com/icl-utk-edu/lapackpp
 - TestSweeper github.com/icl-utk-edu/testsweeper
 - Issue tracking & pull requests
- Modified BSD License

SLATE	VORKING IDTES 11
SLATE Develope Af Datos Mark Gares Jako Rozrak Ann YarDak Jako Rogaras Istocative Computing Laboratory January 8, 2020	ers' Guide

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration.

Challenge: HPL on Frontier

- HPL is a distributed LU benchmark with lookahead and GPU support
 - Thanks to AMD for providing source code to rocHPL
 - <u>https://github.com/ROCmSoftwarePlatform/rocHPL</u>
- HPL: 1.194 ExaFlops *1000*1000 / (9408 nodes * 4 GPU * 2 GCDs)
 - At scale 15 TF/GCD! (Theoretical peak 26.5 TF/GCD (double-precision))
- Change in Crusher/Frontier default thread binding reduced performance by 30%
 - Frontier reserved 1st core for system use
 - Needed to select all cores to fix binding (srun -S0)
- Carefully tuned code
 - Very specific binding of process-threads to hardware, block sizes, thread binding, oversubscription
 - Allows very specific overlap of GPU and CPU work
 - Panel done on the CPU using OpenMP threads
- Challenge: Make this hand-tuning happen automagically.

AICI

THE UNIVERSITY OF

TENNESSEE