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Introduction

Many factors contribute to overall application performance in today’s high-perfor-
mance cluster computing environments. These factors include the memory subsys-
tem, network hardware and software stack, compilers and libraries, and I/O subsys-
tem. The large variability in hardware and software configurations present in clus-
ters can cause application performance to also exhibit large variability on different
platforms or on the same platform over time. Compute-intensive applications may
perform well on an architecture with efficient utilization of CPU and single-processor
memory, such as the Intel Xeon, while memory-intensive applications may perform
well on an architecture with good scalability of the memory subsystem, such as the
AMD Opteron node [6]. Even with a fixed hardware configuration, software factors
can cause large variations in performance. Compilers that produce acceptable code
on some platform configurations may produce suboptimal code on other platform
variants. Some math libraries require hand tuning of various compiled-in parameters,
and a library that is hand-tuned for one platform may perform poorly on a different
variant of the same platform. Some libraries (e.g., BLAS, LAPACK) have standard-
ized APIs that are shared across different implementations that can have considerable
variations in performance. It can be difficult to predict which library variant will per-
form best on a particular platform without testing each variant on that platform. If an
application is updated and/or ported to a platform originally not supported, the opti-
mization flags in the application Makefile may be anachronistic or otherwise inappro-
priate and may need to be altered to achieve acceptable performance on new target
platforms and platform variants.

1 This work is supported by DOE SciDAC under grants CE-FC02-01ER25490 and CE-FGO02-
01ER25510 and by NSF PACI under grant NSF-ACI-9619019 subaward #790.
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Since the first steps in performance tuning of an application are to use the best
compiler flags and the best implementations of library code available for that plat-
form, automated collection of performance data for benchmark and application codes
that test these factors can help system administrators and application developers in
making the correct default and application-specific selections, respectively.

Application developers may have a choice of cluster systems on which to run and
may need performance data that characterizes their application, for example as com-
pute, memory, or I/O intensive, in order to make the best choice. If performance data
for benchmark codes with similar characteristics have already been collected, applica-
tion developers can make an appropriate choice without having to optimize and run
their code on all the available systems.

Once a particular system has been selected and the best compile flags and libraries
determined, further performance improvement will involve hand tuning. Routine-
level and/or loop-level profile data based on both timing and hardware counter met
rics, including derived metrics such as instructions per cycle (IPC) and the floating
point to memory operations ratio (F:M), can help point to areas of the code that will
benefit from particular hand-tuning techniques (e.g., outer loop unrolling for nested
loops with low F:M ratio). Event tracing can help to further pinpoint specific perfor-
mance problems. However, the majority of application scientists do not have the time
or inclination to make extensive changes to their source code in order to collect per-
formance data. Furthermore, analyzing large amounts of performance data can be a
daunting task, and pinpointing specific performance problems that will benefit most
from hand tuning can be like looking for a needle in a haystack. Determining the
cause of a performance problem and how to fix it often requires specialized knowl-
edge of the architecture and its interaction with the compiler and runtime system.
Automated analysis of performance data can help reduce the dimensionality of the
performance metric space, identify points in the space that indicate performance
problems, and map those points onto locations in the source code.

The remainder of this paper describes the following tools that address the above is-
sues:

* the PerfSuite collection of easy-to-use tools, utilities, and libraries for perfor-
mance analysis on Linux clusters

* the Dynaprof tool for inserting performance measurement instrumentation direct-
ly into a running application’s address space at run time, and

* the CUBE display tool for interactive exploration of a multidimensional perfor-
mance space based on a processor-node-cluster hierarchy

PerfSuite

PerfSuite is a collection of tools, utilities, and libraries for software performance
analysis where the primary design goals are ease of use, comprehensibility, interoper -
ability, robustness, and simplicity. PerfSuite development was motivated primarily by
the lack of available, reliable, low- or no-cost software suitable for use on Linux clus-
ters in a production environment with the widest possible variety of application soft-
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ware. The user community of the NSF supercomputer center program conducts re-
search across a wide variety of scientific and engineering domains and the production
codes used on these resources are no longer limited to the traditional Fortran-77 style
shared-memory-parallel application code. It is common to see languages such as C,
C++ and Java as the primary languages used in computationally-intensive simula-
tions, so performance analysis support for applications written in these languages is
essential for general-purpose use.

At the National Center for Supercomputing Applications (NCSA), a transition
from shared-memory multiprocessors such as the SGI Origin 2000 array, which had
been the mainstay of production computing resources in the second half of the 1990" s,
to Intel IA32-based and (later) [A64-based Linux clusters equipped with Myrinet in -
terconnects represented a major shift in the computing paradigm. This shift affected
not only the way that researchers and application developers designed and imple-
mented their software, but in addition had substantial implications with respect to the
supporting software available for sophisticated performance analysis. Like many
vendors of HPC systems, the IRIX operating system used on the Origin offers a
wealth of excellent GUI-based performance analysis tools to the user provided in the
SpeedShop package. Additionally, a simple yet powerful command line utility "per-
fex" and a high-level API are provided for users who wish to collect detailed perfor-
mance-related data with minimal effort [28]. In practice, it was noted that a substan-
tial majority of users tended to prefer the simpler interfaces to performance analysis
in their development efforts and frequently found that the basic yet accurate data pro-
vided by the simpler tools were sufficient for their analysis needs.

With the arrival of the IA32 and IA64 Linux clusters at NCSA in 2002, the lack of
any similar capabilities was immediately apparent. Fortunately, the then-current re-
lease of the PAPI library [19] and the underlying performance counter drivers that it
uses provided the low-level access to the data and functionality required to support
similar tools on both architectures and so design and development of what became
PerfSuite began. It is important to note that the motivation for PerfSuite was and is
not research-oriented, but rather was to address an immediate need of the general sci-
entific and engineering communities - as a result, design decisions are heavily influ-
enced by an assessment of the anticipated tradeoff between sophisticated capabilities
that may be of long-term interest only to the computer science and tool developer
communities versus simpler capabilities more likely to be of benefit in day-to-day use
in the field by end users. We feel that the bias towards simplicity pays off in stability,
ease-of-use, maintainability, comprehensibility, and learnability for the broadest pos-
sible audience. Prototype releases of PerfSuite software were made internally in late
2002 and began to see initial adoption by technical staff working directly with the
NCSA user community shortly thereafter [11,12].

Figure 1 is a block diagram that shows the organization of a subset of PerfSuite
software that addresses hardware performance event data. PerfSuite also provides ad-
ditional support for other common tasks in performance analysis such as MPI com-
munication statistics and compiler optimization interpretation that are not addressed
in this paper. The software is designed to be independent of the underlying mecha-
nism for accessing performance data and this is reflected in the insulation of the user-
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accessible components (the command-line utility psrun and supporting libraries) from
external software support. While the current release supports PAPI (versions 2 and 3)
software releases, it is possible to use an entirely different supporting library to access
performance data and indeed an instance of this type of replacement already exists for
access to statistical profiling support using the standard profil() routine in the GNU C
(and similar) libraries. The existence of this alternate interface allows the installation
and use of PerfSuite on platforms where PAPI is not available and/or supported, al-
beit with a restricted set of functionality.
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Fig. 1. PerfSuite structure

PerfSuite includes the following command-line utilities:

*  psinv: a utility that provides access to information about the characteristics of a
machine (e.g., processor type, cache information, available performance coun -
ters)

*  psprocess: a utility that assists with a number of common tasks related to pre-
and post-processing of performance measuremenets

*  psrun: a utility for hardware performance event counting and profiling of sin-
gle-threaded, POSIX threads-based, and MPI applications. Performance
counter multiplexing is supported. psrun requires no source code changes or
relinking of the application.

psrun operates in one of two modes: "counting" mode or "profiling" mode. In
counting mode, psrun reports overall performance information for the monitored
program, while in profiling mode, psrun relates hardware performance event oc-
currences to the program' source code in much the same way as time-based profil-
ers like gprof. Optionally, psrun can also monitor other resource usage of an appli-
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cation (e.g, maximum memory usage, faults, swaps, user/system time, exit infor-
mation, etc). psrun makes use of the XML standard for data representation to en-
hance the flexibility and cross-platform compatibility of the data collected. By de-
fault, psrun uses the PAPI library for access to hardware performance counters [1].
After psrun has generated performance counter measurement file(s), the psprocess
command-line utility can be used to convert the data into a text-based format that
lists the hardware performance data as well as a number of metrics that can be de-
rived from the raw counter values. The events that psrun monitors are specified by
providing an event configuration file in the form of an XML document. Default
configuration files are provided which select appropriate hardware events depend-
ing on the architecture.

In keeping with the philosophy of favoring simplicity over full-featured environ-
ments, each component of PerfSuite addresses one simple, well-defined task. For ex-
ample, the psrun tool is the gateway to the most essential aspect of the performance
analysis process: it is responsible for configuring the performance experiment as di-
rected by the user, acquiring performance data for the application, and depositing the
raw data in XML format to an output stream. It does not attempt to further process
the data nor to present it in a form more suitable for human consumption. The pspro-
cess tool' sesponsibility is to transform the raw performance data generated by psrun
into a report that can be used by the performance analyst or application developer.
The user need not explicitly specify the precise type of performance data contained in
the XML documents presented to psprocess - the tool adapts itself based on the XML
document type encountered. Currently supported XML document types include:

* single process hardware performance counting measurements

*  multiple hardware performance counting measurements combined into a single
*  "multi-experiment" XML document

» single-process statistical profiling measurements using either hardware

» performance based data or time-based data through profil()

psprocess limits itself to directly generating text-based output, as we have
found in practice that this is sufficient for the day-to-day needs of most users incorpo-
rating performance analysis in their development cycle. Another important influence
on the choice of maintaining simplicity by limiting psprocess output to text-based re-
ports is that there have been substantial advances in the development of easily acces-
sible GUI libraries over the past decade. While in the past, the development of a
graphical user interface may have required a sustained effort by experienced pro-
grammers fluent in toolkits such as Motif or Swing, today it is possible to rapidly de-
velop a prototype GUI that is tailored precisely to the user' sieeds. Indeed, many
production-quality GUIs are now developed entirely within the context of high-level
scripting languages such as Perl, Python, and Tcl/Tk (psprocess itself is written in
Tcl). We believe that by providing essential data collection functionality presented in
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a standard format (XML) for which a wide variety of parsers are readily available that
we "open up" the data for the broadest possible audience of potential users and do not
limit the use or presentation of the data in any pre-determined format or style. This
approach also allows us to leverage existing work in GUI development; for example,
psprocess can be directed through a command-line option to deposit the transformed
XML statistical profiling data generated by psrun in a format compatible with the
VProf toolkit developed by Curtis Janssen of Sandia National Labs [9]. VProf' s
graphical interface (based on the Trolltech Qt library) has shown itself to be a conve-
nient and accessible tool for exploring performance data within communities such as
those using NCSA resources. Figure 2 shows a screenshot of a VProf display of pro-
filing data collected using psrun.
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Fig. 2. Vprof display of profile data collected using psrun

Here are the steps required for a user to conduct a performance experiment
of an MPI-based application using PerfSuite. If the goal is to perform
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aggregate performance measurement from application start to completion,
it' s sufficient to enter at the command-line or in a batch script:

$ mpirun -np 8 psrun pcg
$ psprocess psrun.PID.xml

This example uses an application named "pcg" using 8 MPI tasks. Each of the tasks
will write out an XML document named (by default) "psrun.PID.xml", where PID is
replaced by the process ID of the application instance. For an 8-processor run, this
will result in eight separate XML files. The user may then examine each of these files
individually by post-processing with psprocess as shown above. In this case, perfor-
mance information will be displayed as shown in Figure 3:
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PerfSuite Hardware Performance Summary Report

Version
Created
Generator
XML Source

Execution Information

: 1.0
: Thu Apr 01 10:43:50 AM CST 2004
: psprocess 0.2

: pcg-8p-2ppn.20035.xml

Date
Host
User

: Wed Mar 31 18:28:52 2004
: ¢n003
. rkufrin

Processor and System Information

Node CPUs )
Vendor : Intel
Family : Pentium Pro (P6)
CPU Revision )
Clock (MHz) 1 997.001
Memory (MB) : 1510.82
Pagesize (KB) : 4
Cache Information

Cache levels 12
Level 1

Type : instruction
Size (KB) 0 16
Linesize (B) 1 32
Assoc : 4

Type : data
Size (KB) . 16
Linesize (B) 132
Assoc 1 4
Level 2

Type . unified
Size (KB) 1 256
Linesize (B) 132
Assoc : 8
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Fig. 3. Text-based performance output from a single process (counting mode)

Index Description
ue

Counter Val -

1 Conditional branch instructions............c.cececevveeerueuennee
17353508735

2 Branch inStructions..........c.ceceeeveeeererenenenenenne
17344906363

3 Conditional branch instructions mispredicted.....................
322161562

4 Conditional branch instructions taken.............cccceceeenene
12481985055

5 Branch target address cache misses..........cccoeerueuennnee
888816252

6 Requests for exclusive access to clean cache line

7 Requests for cache line invalidation............c.ccccceenenee.
28142160

8 Requests for cache line intervention............cccccveueneee.
17579637

9 Requests for exclusive access to shared cache line...............
30047790

10 Floating point multiply instructions............c..ccccveunee.
284143164

11 Floating point divide insStructions............ccceevevvereeuenns
9123114

12 Floating point inStructions...........e.ccvevevrveeereeenencns
573805313

13 Hardware interrupts...........cococeuevecveueneeucnnereneenenens
71188

14 Total CYCIES....coververeiiiirencrieeencreeese e
136942513622

15 Instructions iSSU€d..........ccceerereenererenenerenienne
114255067874

16 Instructions completed...........ccceveverenercrencnnenne.
102258408172

17 Vector/SIMD instructions...........ccceceeeeeeeeerereeenne
0

18 Level 1 data cache accesses.........oceerueerueeenueuennennee
78079180353

19 Level 1 data cache miSSes.........ceoeverererereneneneenne
510888983

20 Level 1 instruction cache accesses.........c.coeverveeruenennen
134868207990

21 Level 1 instruction cache misses.........coceverververenennens
45070810

22 Level 1 instruction cache reads..........cccccevevveruenrennens
134809529833

N2 T Avral 1T 1aad sninaan

25498507
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Fig. 3. (cont.)

Statistics

Counting dOmain........cc.cevereeruereerenieieieiereeseseenee

user
MultipleXed........cooveriereneneninieieieeeeeeeeiees

yes

Graduated floating point instructions per cycle.........c..coccenee
0.004

Vector instructions per CYCle.........coevvevvueriieneenieneeneenne

0.000

Floating point instructions per graduated instruction..................
0.006

Vector instructions per graduated inStruction.............cceeeeuene
0.000

Floating point instructions per level 1 data cache access..............
0.007

Graduated instructions per cycle.........cocevvevevenencnnennenne.

0.747

Issued instructions per cycle........coceevevverienienenenenennens

0.834

Graduated instructions per issued instruction..............ccc.evee...
0.895

Issued instructions per level 1 instruction cache miss.................
2535.013

Graduated instructions per level 1 instruction cache miss..............
2268.839

Level 1 instruction cache miss ratio.........cc.ceceevecvereeriennenne 0.000
Level 1 data cache accesses per graduated instruction..................
0.764

% floating point instructions of all graduated instructions............
0.561

% cycles stalled on any reSOUICe..........eevvereervereereenneene

AR N0

Fig. 3. (cont.)

The user may extend the scope of the report to include aggregrate information col -
lected from all MPI tasks by first combining the individual XML documents into a
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single "multi-document" using psprocess, and then repeating the post-processing step
with the new multi-document, as follows:

$ psprocess -c psrun.*.xml > combined.xml
$ psprocess combined.xml
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PerfSuite Hardware Performance Summary Report

Version 1 1.0

Created : Thu Apr 01 10:54:05 AM CST 2004
Generator : psprocess 0.2

XML Source : combined.xml

Execution Information

Date : Wed Mar 31 06:28:52 PM CST 2004

Hosts : ¢n003 cn004 cn005 cn006

Users : rkufrin

Aggregate Statistics Min  Max Median Mean StdDev
Sum

% CPU utilization............... 92.68 9486 9424 94.00 0.72
751.99

% cycles stalled on any resour 7.10 7542 58.03 5386 21.70
430.90

% floating point instructions of all graduated instructions

0.00 126  0.81 077 0.39
6.14
Bandwidth used to level 1 cache (MB/s)

0.75 161.66 13620 12236 51.00
978.89
Bandwidth used to level 2 cache (MB/s)

0.38 14033 112.68 100.70 44.18
805.62
CPU time (seconds).............. 136.21 137.40 137.23 13692 0.3
1095.40
Floating point instructions per graduated instruction

0.00 0.01 0.01 0.01  0.00
0.06
Floating point instructions per level 1 data cache access

0.00 0.01 0.01 0.01  0.00
0.08
Graduated floating point instructions per cycle

0.00 0.01 0.01 0.00  0.00
0.04
Graduated instructions 0.50 1.11 0.63 0.69 0.20
5.54
Graduated instructions per issued instruction ~ 0.43 0.90 0.66 0.67 0.18
5.38
Graduated instructions per level 1 instruction cache miss

1331.06 71290.13 1995.55 10647.95 24506.02
85183.61
Issued instructions per cycle... 0.79 1.28 1.03 1.05 020
8.39
Issued instructions per level 1 instruction cache miss
2437.11 82205.88 3131.90 13081.17 27941.92
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Fig. 4. Text-based performance output from a parallel run (counting mode)

Figure 4 shows an example of this type of performance reporting. To allow for
more scalable handling of potentially large processor-count runs, information is dis-
played using standard descriptive statistics (e.g., mean/max/min, deviation). The in-
tent is to allow the user to quickly isolate outliers with respect to performance that
can be then examined more closely to determine specific causes for performance
degradation. In the case of this particular example (pcg), the algorithm dedicates one
processor to handling I/O activities and therefore there is a single task that displays
significantly different behavior than the remainder. By isolating and removing this
extraneous task from the aggregate report (by simply not including it in the combin-
ing step above), the user can focus on those tasks that are performing the bulk of the
computational work.

With minimal effort, the performance analysis with PerfSuite can be adjusted to
work in profiling mode. There is no need for the user to modify their build process
for their application in any way, with the exception of retaining symbol table infor-
mation to allow for mapping of program addresses to specific source code locations.
Using PerfSuite in profiling mode is accomplished by specifying an alternate XML
configuration document, as follows:

$ mpirun -np 8 psrun -c /usr/share/perfsuite/xml/pshwpc/papi_profile_cycles.xml pcg
$ psprocess -e pcg psrun.PID.xml

This minor change to the command-line used to invoke psrun results in an XML
document being created that records the results of a statistical profiling experiment
using any PAPI event as a trigger (this is similar to functionality provided in SGI' s
SpeedShop toolset). An example of the output of psprocess (edited to reduce space
requirements) when applied to such an experiment is shown in Figure 5.

As previously mentioned, the primary motivation for PerfSuite development was
to enable easy-to-use and general techniques for performance analysis on 1A-32 and
[A-64 Linux clusters at NCSA. However, the software was soon adopted for center-
wide use with the express purpose of automating the performance analysis of the en
tire workload of jobs running on NCSA' darge-scale Pentium and Itanium clusters.
Because user intervention is not required and measurements can be obtained with ar
bitrary existing applications, PerfSuite was incorporated within the software stack at
NCSA to be used on all parallel applications submitted to these clusters. Within the
span of eight months, nearly five million records of performance data were gathered
this way and stored in a relational database for use in later workload characterization
analysis. This automatic collection continues (now expanded to include the largest
single cluster deployed to date at NCSA, a 2500+ processor Intel Xeon cluster, cur-
rently #4 on the Top500 supercomputer list).
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PerfSuite Hardware Performance Summary Report

Profile Information

Class : PAPI

Event : PAPI_TOT_CYC (Total cycles)
Period : 10000000

Samples 110422

Domain : user

Run Time 1 126.26 (seconds)

Min Self % : (all)

Module Summary

Samples Self % Total % Module
10030 96.24% 96.24% [u/ncsa/rkufrin/apps/pcg/pcg
374 3.59% 99.83% /lib/libc-2.2.4.50
17 0.16% 99.99% /lib/libpthread-0.9.s0
1 0.01% 100.00% /lib/libm-2.2.4.s0

File Summary

Samples Self % Total % File
8177 78.46% 78.46% /[u/ncsa/rkufrin/apps/pcg/matvect.c

980 9.40% 87.86% /u/ncsa/rkufrin/apps/pcg/main.c
624 5.99% 93.85%
/usr/src/build/85131-i386/BUILD/glibc-2.2.4/csu/init.c
244 2.34% 96.19% /u/ncsa/rkufrin/apps/pcg/vector.c
230 2.21% 98.40%
/usr/src/build/85131-i1386/BUILD/glibc-2.2.4/string/../sysdeps/generic/memcpy.c
72 0.69% 99.09%
usr/src/build/85131-1386/BUILD/glibe-2.2.4/malloc/malloc.c
28 0.27% 99.36%
/usr/src/build/85131-i1386/BUILD/glibc-2.2.4/stdlib/strtod.c
11 0.11% 99.46%
/usr/src/build/85131-i386/BUILD/glibc-2.2.4/stdio-common/vfscanf.c
8 0.08% 99.54%
/usr/src/build/85131-1386/BUILD/glibc-2.2.4/linuxthreads/mutex.c
7 0.07% 99.61%
usr/src/build/85131-1386/BUILD/glibe-2.2.4/1ibio/../sysdeps/i386/bits/string.h
7 0.07% 99.67%
/usr/src/build/85131-i1386/BUILD/glibc-2.2.4/string/../sysdeps/generic/strncpy.c
4 0.04% 99.71% [u/ncsa/rkufrin/apps/pcg/dmio.c
Function Summary

Samples Self % Total % Function
8177 78.46% 78.46% dvec_mult_dspmat
980 9.40% 87.86% preconditioning
624 5.99% 93.85% ?
230 2.21% 96.06% memcpy

178 1 1I2N0L Q7 VYROL Avar all Aatnead
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Fig. 5. Abbreviated psprocess output from a profiling experiment

The initial performance collection yielded extremely interesting and useful results
and provided concrete information regarding the effective utilization of Linux-based
clusters for state-of-the-art high-performance computing resources. For example, it
was learned that the fraction of user applications achieving ten percent of the peak
theoretical floating point performance was approximately 12% on NCSA' Pentium
IIT cluster and approximately 7% on first-generation Itanium hardware. High-level
performance characterizations such as enabled by these studies make it possible for
center management to easily assess the effectiveness of the resources delivered to the
user community and also provides awareness of specific applications that might be
good candidates for more focused efforts in optimization by the developers and exter-
nal performance experts. Figure 6 shows an example of a graphical breakdown of the
NCSA workload characterization obtained using PerfSuite during a portion of 2003.
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Fig. 6. Workload characterization of IA-64 applications on NCSA clusters

DynaProf

DynaProf is a performance analysis tool designed to insert performance measure-
ment instrumentation directly into a running application’s address space at run time
[5]. The instrumentation included with the current release of DynaProf can measure
real-time as well as any hardware performance metrics available through the PAPI
hardware performance counter library. Run-time instrumentation of the object code
has numerous advantages over traditional source-based performance profiling sys-
tems, most significant of which is the elimination of the interference of calls to the in-
strumentation with the compiler' soptimization passes. For aggressively scheduled
processors, significant code reorganization and subroutine inlining are often required
for maximal utilization of the processors functional units and can interfere with
source-code based performance instrumentation. An additional benefit is the removal
of the instrumentation’s dependency on the compilation process. The type and format
of the instrumentation can be changed without recompiling the application, and in-
strumentation can be both inserted and removed dynamically while the application is
running. On Linux systems, DynaProf is based on the freely available Dyninst dy-
namic instrumentation library from University of Maryland [2].

DynaProf provides a simple easy-to-use command line interface. Commands are
provided for loading or attaching to an executable, listing the modules and functions
and instrumentation points, and inserting instrumentation in the form of probes. For
threaded codes, DynaProf detects a threaded executable and loads a special version of
the probe library that detects thread creation and termination and instruments all
threads. For MPI programs, DynaProf provides a special load command that enables
instrumentation of all the MPI processes.

The current release of Dynaprof includes several measurement probes. The fol-
lowing three probes provide the ability to instrument specific regions of code:

e papiprobe for measuring PAPI preset and native events

*  papiclock for measuring PAPI real-time and virtual-time cycles

e wallclock for measuring real-time
These probes generate inclusive, exclusive, and 1-level call tree profile data for each
instrumented function. Post-processing scripts are provided that display the profile
data in human readable form.

papiprobe gathers measurements using PAPI [1,19]. PAPI uses the processor’
hardware performance counters to measure specific hardware events like cache miss-
es, branch mis-predictions and floating point instructions. By default, if no argument
is specified, papiprobe defaults to counting with PAPI_FP_INS, or floating poinf in-
structions. Currently, Dynaprof uses PAPI in the user domain. This means that only
events that occur in user context will be counted. Other activity on the system will not
appreciably affect the counts of most operations except resources that must be flushed

2}
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and reloaded upon context switches, like caches and TLBs. Note that the papiprobe
also supports multiplexing of counters. That is, if you pass more events than your
processor can count at any one given time, papiprobe will timeshare the counting
hardware to give the illusion that there are far more counters available than actually
exist on the hardware.

The wallclock probe takes no arguments. It very simply measures elapsed real-
time which is sometimes referred to as wallclock time. It does this using the highest
resolution and lowest latency real time clock available on the host architecture. The
output units are in microseconds.

DynaProf inserts instrumentation directly into the application' sddress space. This
is accomplished through a run-time code generation and patching mechanism based
upon either Dyninst or DPCL, IBM' slerivative effort. Whenever a function is instru-
mented, all its children are instrumented as well. This is to enable the probe to gener-
ate both inclusive and exclusive metrics.

Dynaprof does not enforce the manner in which each probe is to generate its out-
put. By not placing these restrictions on the probe modules, the probe designer is free
to determine whatever output format is most appropriate, be that a real time binary
data feed to a visualization engine or a static data file dumped to disk at the end of the
run. The probes included with Dynaprof write the collected data to disk either when
the application finishes or the user explicitly sends the application a SIGHUP signal.
This signal causes the probe module to flush the data to disk. Note that this data will
be overwritten at the end of the run, so it is recommended that the user copy this data
to a new file as soon as the flush has been performed. Currently, both the PAPI probe
and the Wallclock probe produce a compact file consisting of encoded ASCII data.
The data files are created in the directory where the application exists. Each probe
prints a message to this effect when the probe is first initialized. The files are named
<executable.pid>, where pid is the process identifier. For multithreaded applications,
each thread generates a data file of the form <executable.pid.tid> where tid is the
thread identifier.

Figure 7 shows an example of loading the swim application (a popular shallow water
benchmark), enabling use of papiprobe, instrumenting selected functions, running the applica-
tion, and generating a report. The instrumentation measures Level 1 Instruction and
Level 1 Data Cache Misses.
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(dynaprof) load tests/swim

(dynaprof) use probes/papiprobe PAPI_L1_DCM, PAPI_L1_ICM
(dynaprof) instr function swim.F calc*

swim.F, inserted 8 instrumentation points

(dynaprof) run

papiprobe: output goes to /home/mucci/work/dynaprof/tests/swim.7366
SPEC benchmark 102.swim

NUMBER OF POINTS IN THE X DIRECTION 512
NUMBER OF POINTS IN THE Y DIRECTION 512
GRID SPACING IN THE X DIRECTION  25000.
GRID SPACING IN THE Y DIRECTION  25000.

TIME STEP 20.
TIME FILTER PARAMETER 0.001
NUMBER OF ITERATIONS 120

CYCLE NUMBER 60 MODEL TIME IN HOURS 0.33
Pcheck = 0.1314E+11

Ucheck = 0.5215E+05

Vcheck = 0.5215E+05

CYCLE NUMBER 120 MODEL TIME IN HOURS 0.67
Pcheck = 0.1314E+11

Ucheck = 0.5215E+05

Vcheck = 0.5215E+05

Program exited normally.
Now let' s display the data.

[mucci@nebula]$ probes/papiproberpt /home/mucci/work/dynaprof/tests/swim.7366 > out

Output file : /home/mucci/work/dynaprof/tests/swim.7366

Option string : PAPI_L1_DCM,PAPI_L1_ICM

Processor : 1198 Mhz Genuinelntel Intel Pentium III rev Ox1 (1-way)

Total metrics measured : 2

Metric 1: : PAPI_L1_DCM, Level 1 data cache misses (Native 0x45,0x45)
Metric 2: : PAPI_L1_ICM, Level 1 instruction cache misses (Native 0xf28,0xf28)
Total functions 04

Exclusive Profile of Metric PAPI_L1_DCM.

Name Percent Total Calls
TOTAL 100 5.155e+08 1
calc3_ 52.73 2.718e+08 118
calc2_ 38.52 1.986e+08 120

calcl_ 8.086 4.168e+07 120
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Fig. 7. Using DynaProf to instrument the swim application and display performance data



Mucci, Dongarra, Moore, Song, Wolf, and Kufrin

Inclusive Profile of Metric PAPI_L1_DCM.

Name Percent Total SubCalls
TOTAL 100 5.155e+08 0
calc3_ 52.73 2.718e+08 0
calc2_ 38.52 1.986e+08 0
calel_ 8.086 4.168¢+07 0
calc3z_ 0.2722 1.403e+06 0

1-Level Inclusive Call Tree of Metric PAPI_L1_DCM.

Parent/-Child Percent Total Calls
TOTAL 100 5.155e+08 1
calcl_ 100 4.168e+07 120
calc2_ 100 1.986e+08 120
calc3z_ 100 1.403e+06 1
calc3_ 100 2.718e+08 118

Exclusive Profile of Metric PAPI_L1_ICM.

Name Percent Total Calls
TOTAL 100 9.916e+04 1

unknown 29.52 2.927e+04 1
calc2_ 24.01 2.381e+04 120
calcl_ 235 2.331e+04 120
calc3_ 22.87 2.268e+04 118
calc3z_ 0.09378 93 1

Inclusive Profile of Metric PAPI_L1_ICM.

Name Percent Total SubCalls
TOTAL 100 9.916e+04 0
calc2_ 24.01 2.381e+04 0
calcl_ 23.5 2.331e+04 0
calc3_ 22.87 2.268e+04 0
calc3z_ 0.09378 93 0

1-Level Inclusive Call Tree of Metric PAPI_L1_ICM.

Parent/-Child Percent Total Calls
TOTAL 100 9.916e+04 1
calcl_ 100 2.331e+04 120

calc2_ 100 2.381e+04 120
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Fig. 7. (cont.)

CUBE

Acceptance of performance tools among program developers is often limited by
their complexity [18], which is usually perceived through a tool' siser interface. Un-
fortunately, the development of user interfaces is a costly issue, so we designed and
implemented a generic GUI named CUBE [24] explicitly emphasizing simplicity by
combining only a small number of orthogonal features.

CUBE (CUBE Uniform Behavioral Encoding) is a generic viewer that provides the
ability to interactively browse through a multidimensional performance space. The
performance space is essentially a mapping of metrics onto program resources, such
as the call tree, and system resources, such as nodes and processes. The input of
CUBE is a performance experiment stored in an XML-based file format. Similar to
Paradyn [16], CUBE displays the different dimensions of the performance space con-
sistently using tree browsers. However, since we are interested in interactively explor-
ing a mapping of all metric/resources combinations onto numbers as opposed to high-
lighting a limited set of resource foci, we provide a flexible mechanism to select a
particular section of the performance space that contains a subset of the values pro-
vided by the data set and offer functionality to aggregate values within and across the
different dimensions. The display is divided into three parts. The left pane contains
various metrics organized in a specialization hierarchy (i.e., the metric tree), while the
middle pane shows the call tree with its nodes representing call paths and the left
pane shows the system hierarchy consisting of nodes and processes or threads run-
ning on them. Alternatively, the user can switch from the call-tree view to a flat-pro-
file representation giving the performance for functions as opposed to call paths. Fig-
ure 7 shows various metrics calculated from event traces for the SWEEP3D bench-
mark running on a Linux cluster.
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Every tree-node in the display is labeled with a metric value, which is displayed si-
multaneously using a number as well as a colored icon. Colors enable the easy identi-
fication of nodes of interest even in a large tree, whereas the numerical values enable
the precise comparison of individual values. The color is taken from a typical spec-
trum, as it is usually used for temperature scales. The idea is to assign small values a
* * coldeolor and big values a => he¢' tolor. A value shown in the metric tree repre-
sents the sum of a particular metric for the entire program, that is, across all call paths
and the entire system. A value shown in the call tree represents the sum of the select-
ed metric across the entire system for a particular call path. A value shown in the sys-
tem tree represents the selected metric for the selected call path and a particular sys-
tem entity. Briefly, a tree is always an aggregation of all of its neighbor trees to the
right. For example, the user can click on a particular metric and see its distribution
across the call tree. Other than that, the user can specify a certain level of detail by
collapsing and expanding nodes. In collapsed state, a node aggregates across the en-
tire subtree rooted at itself, in expanded state it represents only itself without any
child nodes. The user can switch between absolute values and percentages relative to
the overall execution time. To facilitate the comparison between different experi-
ments the user can select another experiment as the basis for computing the percent-
ages. Also, the GUI includes a source-code display that shows the position of a func-
tion or call site when clicking on it in the call tree. CUBE is implemented in C++ us-
ing the wxWidgets GUI toolkit [26] and libxml2 [14] to parse the XML format.
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Fig. 8. CUBE display of performance data for SWEED3D benchmark

CUBE is generic in that the underlying data model is independent of specific met-
rics. It includes an API to write data files and can be used by any tool mapping met
rics onto program and system resources in a profile-like fashion. Since flat profiles
can be represented as a single-level call tree, it is not limited to tree profiles. A dis-
tinct feature of CUBE is its ability to support cross-experiment analysis by allowing
the user to compute difference experiments from two experiments with different exe-
cution parameters or different code versions. The difference experiment is displayed
just like an ordinary one only with the metric values replaced by difference values, so
that the user can browse through all the program and system resources and see where
and how much the performance differs. Since difference values happen to be negative
and positive for different program or system resources, we graphically represent
mathematical sign by giving the color icon a relief. A raised relief symbolizes a posi-
tive sign, whereas a sunken relief symbolizes a negative sign (Figure 8).

To demonstrate CUBE' wmisefulness in practice, we have combined it with KOJAK
[25,8], an integrated performance evaluation environment for OpenMP and/or MPI
applications, which is available for a large number of UNIX platforms including
Linux clusters. KOJAK generates event traces from running applications and auto-
matically searches them offline for execution patterns indicating inefficient perfor-
mance behavior. In this way, KOJAK transforms the huge amount of low-level data
into a compact representation of performance behavior to be consumed by the end us-
er.

KOJAK includes both tools for event-trace generation and post-mortem event-
trace analysis. Recording of events related to OpenMP parallel execution is supported
through the POMP [17] profiling interface for OpenMP. The OPARI preprocessor in-
cluded in KOJAK allows users to automatically instrument the OpenMP constructs in
their codes. On Linux systems, automatic instrumentations of user functions can be
accomplished using third-party software, such as TAU [23] or the PGI compiler [20].
The PGI compiler provides a profiling interface that notifies the tracing library of
function entry and exit events when the function was compiled using a specific com-
pile flag. Besides analyzing inefficient use of the parallel programming model, KO-
JAK provides the ability to assess CPU and memory performance by analyzing
counts of low-level hardware events collected with PAPI [1], such as cache misses or
floating point instructions.

Changing execution parameters for a program can alter its performance behavior.
Altering the performance behavior means that different results are achieved for differ-
ent metrics. Some might increase while others might decrease. Some might rise in
certain parts of the program only, while they drop off in other parts. Finding the rea
son for a gain or loss in overall performance often requires considering the perfor-
mance change as a multidimensional structure. With CUBE' dlifference operator, a
user can view this structure by computing the difference between two experiments
and rendering the virtual result experiment like a real one.
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We demonstrate this feature by comparing two different domain-decomposition
strategies for CX3D [15]. CX3D is an MPI application used to simulate Czochralski
crystal growth, a method applied in the silicon-wafer production. The simulation
covers the convection processes occurring in a rotating cylindrical crucible filled with
liquid melt. The convection, which strongly influences the chemical and physical
properties of the growing crystal, is described by a system of partial differential equa-
tions. The crucible is modeled as a three-dimensional cubic mesh with its round
shape expressed by cyclic border conditions. The mesh is distributed across the avail-
able processes using a two-dimensional spatial decomposition. The application was
executed on an Intel Pentium III Xeon 550 MHz cluster with eight 4-way SMP nodes
connected through Myrinet. We ran the application with a total of 16 processes on
four nodes.

We used a 16 x 1 decomposition for the first and a 4 x 4 decomposition for the
second experiment. The application was compiled and instrumented using the PGI
compiler. We generated an event trace for each configuration and processed both of
them using KOJAK, obtaining one CUBE experiment per trace. After that, we ap-
plied the difference operator to the two experiments (i.e., we computed (4 x 4) - (16 x
1)) yielding a virtual difference experiment, which is shown in Figures 9 and 10.

The left pane with label © © Mrics' provides the aggregated difference for all met-
rics. In Figure 9, the root metric is collapsed and shows the difference in total execu-
tion time. The difference is negative, as indicated by a minus sign and a sunken relief
of the color square, so the 4 x 4 version performed better. Expanding the metric tree,
as in Figure 10, reveals that in spite of the better overall performance, the late-sender
problem (i.e., a receiver waiting for a message that has not been sent yet) became
more severe, as indicated by a missing minus sign and a raised relief of the color
square. The middle pane contains the distribution of this waiting time across the call
tree. It turns out that the aggravated late-sender problem came from a call path that
was not taken in the 16 x 1 version. The conclusion is that the positive effect of the 4
x 4 configuration is to some extent overridden by the increased late-sender problem,
which points to an opportunity for further improvement.
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Fig. 10. CUBE analysis of CX3D executions showing differences in more specialized
performance metrics

Related Work

There are a multitude of interactive browsers, such as AKSUM [22], HPCview
[13], and SvPablo [4] that correlate the program structure with different performance
metrics. From a technical viewpoint, also the coloring of nodes in the tree to symbol
ize a numeric value has been previously applied, for example, in the xlcb corefile [27]
browser. The CUBE display' distinctive feature is the combination of a generic API
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that makes it available for third-party tools together with its ability to calculate and
display difference experiments. Historically, CUBE emerged from the KOJAK [25]
project, where a similar browser was used to present the results of event-trace analy-
sis.

The logic used to calculate difference experiments extends the framework for mul-
ti-execution performance tuning by Karavanic et al. [7], which was used in the Para-
dyn project [16] for an optimization strategy based on using historical performance
data to guide the search for performance bottlenecks. The most significant difference
between CUBE and their framework is that the difference experiment can be pro-
cessed and viewed like an ordinary one, that is, the difference operation is closed.

The concept of combining multiple experiments in a single (albeit virtual) experi-
ment can be of great benefit when used together with experiment generators, such as
ZENTURIO [21]. Likewise, the CUBE difference operation could as well work on
data stored in a performance database, such as PerfDBF [3].

Conclusions and Future Work

Used collectively at different stages of the application development, testing, and
tuning cycle, the above suite of tools can help reduce the time and effort involved in
achieving good application performance on Linux clusters.

Further work is needed to integrate these tools. For example, we plan to write Dy-
naProf probes to produce XML formatted data for PerfSuite and CUBE.
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