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We  propose  the  definition  and  partial  implementation  of  a  portable  open  source
architecture  for  performance  data  acquisition  and  analysis.  The  proposed  work  will
result  in  a  portable,  open  source  framework  for  instrumentation  of  applications  and
measurement  and analysis  of performance data.   The framework architecture  will  be
structured,  to  enhance  separation  of  functionality,  as  well  as  integrated,  using  well-
defined  interfaces  between  components.   The  architecture  will  be  designed  for
scalability and efficiency, thus extensible to systems with thousands of processors.  The
framework  will  be  populated  with  proven,  working  component  tools  at  each  layer.
However,  because  each  interface  will  be  well  documented  with  clear  functional
isolation, the framework will be extensible and augmentable with emerging new tools
via  common  APIs  and  data  formats.  The  framework  will  satisfy  two  goals:  (1)  to
provide  a  coherent  working  suite  of  tools  and (2)  to  provide  tool  researchers  a firm
foundation on which to base focused tool efforts.

The architecture has four primary layers: (1) instrumentation, (2) measurement, (3) CCT
(command,  control,  and  transport),  and  (4)  analysis.   The  instrumentation  and
measurement  layers  are  connected  by  a  common  measurement  API  so  that  the



performance  events  identified  for  observation  are  decoupled  from  the  particular
technology used for instrumentation.  The measurement and analysis layers are logically
connected by an infrastructure for data management so that data can be stored, shared,
and operated upon by standard means. Layers are vertically integrated by a collection of
well-defined events and contextual hooks that provide a mapping of low-level data to
high (user)  level information.  Between horizontal components and vertical layers is a
virtual  layer,  CCT,  that  provides  efficient  dissemination  of  commands  and  control
operations, and collection and filtering of data from a large number of execution nodes.
The proposed architecture is shown in Figure 1.

Figure 1: Architecture for Performance Data Acquisition and Analysis

Instrumentation Layer

The instrumentation layer will provide tools for the automated insertion of measurement
functions with respect to instrumentation points.  It will define these points compatible
with  user  semantics,  thus  answering  "what  are  meaningful  instrumentation  points?"
These points will range from the low-level (e.g., instructions, basic blocks or memory
locations) to the high-level (e.g.,  source-code constructs such as loops, functions, and
objects).   The  instrumentation  point  definitions  will  be  made  available  to  high-level
tools  via  the  measurement  API.   Instrumentation  techniques  to  be  supported  in  the
framework  include  source  code,  library,  link-time,  binary  code,  and  execution-time
instrumentation.   This  layer  will  enable  dynamic  instrumentation  for  attachment,



detachment,  and  re-attachment  to  running  programs  without  recompilation  or  re-
execution.

Measurement API
 
A measurement API will provide for instrumentation mechanisms to target a common
measurement  infrastructure.   The interface  will be extensible  to enable the definition
and integration of new measurement functionality. (Pre-defined measurement functions
are provided at the next layer).

Measurement Layer

The measurement layer will provide a rich toolbox of measurement operations and data
structures to capture runtime information about performance events.  Common profiling
(i.e.,  statistical  summary)  and  tracing  (i.e.,  event  recording)  functionality  will  be
provided here.  Hardware performance monitoring via the PAPI portable interface will
be supported.   The measurement  infrastructure  will  be organized  as a set  of runtime
modules  configurable  statically  at  compile  time  or  dynamically  loaded.   The
measurement layer is inherently extensible with the addition of new modules.  It is also
at this  layer  where options  for performance data access are supported.   Both end-of-
execution and various forms of online access (i.e., real-time performance monitoring)
will be supported.

Data Management Interface

This  interface  lies  between  the  measurement  and  analysis  layers.  It  defines  the  API
between these but, for scalability reasons, parts of the actual functionality may reside in
the  virtual  CCT  layer.  The  data  management  interface  will  provide  standardized
performance data  formats  for  outputs  of  measurement  functions  appropriate  for  both
low  and  high-level  performance  features  ranging  from  raw  instruction  counts  to
summarized instruction patterns to results of highly summarized on-line analysis.  It will
also supply data handling/filtering functions to reduce size of outputs of measurement
functions including the following:

• Performance  data  size  reduction  via  online  analysis  and  summarization  along
with standard formats for summaries of performance data

• Performance data size reduction via sampling along with standard formats for
sampled data (i.e., interval, frequency).

• Performance  data  size  reduction  via  pattern  detection  and  other  high-order
performance  feature  extraction,  along  with  standard  formats  for  instruction
patterns.  Functions  placed  in  the  data-acquisition  hierarchy  primarily  for  the
purpose of reducing data size or manageability are here classified as being in the
data  management  interface.  When  part  of  size  reduction  involves  point-of



acquisition analysis, these could just as reasonably be classified in the next layer
up (analysis).

Data management will further supply standardized performance data formats for outputs
of  data  handling/filtering  functions  and  a  toolset  for  common  data
handling/filtering/compacting  functions  with  an  API  allowing  definition  of  new data
handling/filtering functions.

A  performance  database  schema  will  be  developed  for  storing  raw  and  processed
measurement  output  and  analysis  results  and  to  allow  for  rapid  retrieval  to  enable
decision-making based on history.

Command, Control, and Transport (CCT) Layer

The CCT layer will provide the means to scale this framework to 1000’s  of nodes. It
consists of a facility to construct an overlay network to support multicast of command
and  control  information  to  execution  nodes  and  the  ability  to  support  distributed
processing of data streams as they are collected. This processing is done in data filters,
which  are  distributed  throughout  the overlay  network.  While  common filters  will  be
provided, tool builders will be able to construct new ones and dynamically load them
into the CCT layer.

Analysis Layer

The analysis  layer  will  provide  a  rich  toolset  for  building  data  analysis  functions  to
interpret  the  output  of  the  measurement  system,  with  functionality  including
performance  modeling,  simulation,  and  visualization.   It  will  also  include  an  API
allowing for definition of new data analysis functions and for plug-and-play with new
and existing analysis functions.

Vertical Integrators

The scalable infrastructure will allow for efficient collection, reduction, transport, and
analysis  of  performance  data  from  thousands  of  nodes,  connecting  measurement,
filtering/compacting,  analysis/modeling/visualization  functions  in  a  flexible,  high-
performing fashion.

Contextual information for vertical integration across all the layers will allow users to
tie results of measurement and analysis back to application abstractions  (as for example
to be able to correlate instruction counts to source-code constructs)

3.1 Current Status



Instrumentation Layer

The Program Database Toolkit (PDT) has been developed during the last five years to
provide  a  framework  for  building  source  analysis  tools.  It  uses  commercial-grade
parsers for C, C++, Fortran 77/90/95, and produces a program database with a C++ class
library  (DUCTAPE)  for  accessing  the  PDB.   PDT  has  been  ported  to  almost  all
platforms where
TAU  is  available.   TAU  (see  Measurement  API,  below)  uses  PDT  to  implement
automatic  source  instrumentation  tools.   LANL  uses  PDT  to  implement  automatic
interface  generation  for  language  interoperability,  as  part  of  the  CCA project.  TAU
developers  have been working closely with Bernd Mohr (Research Centre  Jülich)  on
PDT.   Mohr  has  an  OpenMP source  instrumenter,  OPARI,  that  is  used  in  the  TAU
project. When PDT obtains statement-level analysis capabilities (being worked on now),
OPARI may be rewritten to use PDT. PDT is an example of project that has received
very little funding to date.

Dyninst has been developed to provide a platform independent framework for runtime
instrumentation  of  programs.   Dyninst  capabilities  include  binary  analysis  (including
control flow graph extraction and natural loop identification) and runtime code insertion
(at selected procedures, loops or instructions). Dyninst currently runs on Alpha, MIPS,
Power, SPARC, and IA-32 (x86) processors. A port to IA-64 is underway, with a pre-
release version scheduled to be available at the end of 3Q03. Programs written in C,
C++  and  Fortran  can  be  instrumented.   Currently  support  for  some  C++  features
(inheritance  and  template  classes)  is  functional,  but  somewhat  awkward  to  use.  In
addition to runtime changes to programs, Dyninst can also be used as a binary editing
tool (which is often desirable for tool use in a batch environment). Dyninst is based on a
single  node  instrumentation  model;  however,  tools  such as  Paradyn and DPCL have
been  built  which  provide  multi-node  instrumentation  using  Dyninst  for  intra-node
instrumentation. 

SvPablo is a performance analysis toolkit that contains instrumenting parsers for C and
Fortran applications (C++ support is under integration via ROSE).  Using those parsers,
one can instrument procedure calls and outer loops in the source code of an application.
During execution, SvPablo's data capture library maintains counts, durations and other
metrics obtained from hardware performance counters for each instrumented fragment.
Instead of producing a regular trace like other tools, SvPablo's library keeps a summary
of the captured metrics. Hence, instrumented programs can run for hours or days, on
thousands or processors, without producing excessive performance data.

Measurement API

The  TAU  project  has  gained  significant  portability  and  robustness  in  performance
measurement  capability  through  the  use  of  a  common  target  for  performance



instrumentation.   The current interface includes support  for standard and user-defined
events,  performance mapping,  and performance data  access.   A common API allows
different  compatible  libraries  to  be  used.   The  TAU  measurement  library  can  be
configured  to  support  profiling  and/or  tracing,  call  path  profiling,  counter
measurements, use of different timers, and several other user-determined features.  The
measurement system (API and library) works across all major parallel platforms and for
all major programming languages: C, C++, Fortran 77/90/95, Java, Python.  It can be
accessed from different instrumentation levels and can utilize other technology such as
Dyninst and PAPI.  An abstract computational model allows the measurement API and
library to be applied to all parallel execution models.

Measurement Layer

PAPI  provides  a  portable  interface  to  hardware  performance  counters  on  modern
microprocessors.   These  counters  exist  as  a  small  set  of  registers  that  count  events,
which are occurrences of specific signals and states related to the processor’s  function.
Monitoring these events has a number of uses in application performance analysis and
optimization.   PAPI  has  been  incorporated  into  several  third-party  commercial  and
research  performance  analysis  tools,  including  SvPablo,  TAU,  and  Dynaprof,  and
includes bindings for C, C++, and FORTRAN for direct application in end user codes.
PAPI has become a  de facto industry standard and is sponsored by the Parallel Tools
Consortium (http://www.ptools.org/  )  .  PAPI is currently supported on a broad range of
architectures, including the IBM POWER series, HP Alpha, Intel/AMD Linux, MIPS,
Sun, Cray, and others.  Ongoing development effort is invested to port PAPI to newer
architectures such as the Cray X1, AMD Opteron, and others. Simultaneously, a major
development  revision  is  underway  to  streamline  and  optimize  the  PAPI  hardware
independent  layer  to  both  incorporate  additional  features  available  on  newer
architectures and to simplify the process of porting to additional architectures.

Data Management Interface

A first version of the Performance DataBase Framework (PerfDBF, soon to be released)
has been developed at University of Oregon with an ASCI Level 3 grant during the past
year. PerfDBF uses PostgresSQL (or MySQL) to store multi-experiment parallel profile
data.  PerfDBF can currently input TAU profiles, but plans are to build other profile data
readers.   An API has been  implemented  for building performance analysis  tools  that
offers a higher-level interface for querying the database.   Of course,  the tool can use
SQL commands directly.  The TAU project is developing an analysis toolkit above this
layer to provide commonly used analysis functions.  For example,  the TAU ParaProf
tool currently can use a PerfDBF-created profile database as an input source.

SvPablo,  a  graphical  performance  browser  developed  at  Illinois,  represents  the  third
generation of the Pablo tools for performance data capture, analysis and visualization in



parallel  applications.  As  such,  the  toolkit  reflects  experience  obtained  on  multiple
platforms  and  environments.  Under  the  scope  of  the  NSF  Alliance's  Performance
Expedition,  SvPablo performance data has been imported to the Prophesy system, an
infrastructure  developed  at  Northwestern  University  for  analysis  and  modeling  of
performance in parallel and distributed applications. Prophesy is based on the Postgres
database, and supports both storing observed data and predicting performance for other
configurations  of  the  same  application/platform  pair.  In  the  current  version,  this
integrated system can only handle the durations of application fragments, but the plan is
to extend this support to the other metrics produced by the SvPablo data capture library,
such  as  data  from  hardware  performance  counters  and  rates/volumes  from  MPI
communication.

Command, Control, and Transport (CCT) Layer

Runtime tools are crucial to program development.  In desktop environments, we take
tools  for  granted.   In  the  Grid,  it  is  difficult  to  find  tools  because  of  the  complex
interactions  between  applications,  operating  system  and  layers  of  job
scheduling/management  software.  Therefore  each runtime tool  must  be ported to run
under  each  job  management  system;  for  m tools  and  n environments,  the  problem
becomes  an  m*n effort,  rather  than  m+n.   The  consequence  is a paucity  of  tools  in
distributed  and  Grid  computing  environments.  In  response,  we  analyzed  several
scheduling environments and run-time tools to better understand their interactions.  We
isolated  what  we  believe  are  the  essential  interactions  between  tools,  schedulers,
resource  manager,  and  applications.  We  have  proposed  a  standard,  called  the  Tool
Daemon  Protocol,  which  codifies  these  interactions  and  provides  the  necessary
communication  functions.  We  implemented  a  pilot  version  of  this  library  and
experimented  with  Parador,  a  prototype  using  the  Paradyn  Performance  tools  under
Condor.  The  TDP  effort  has  been  funded  to  date  as  a  background  effort  from  the
Paradyn  and  Condor  projects.  While  there  is  significant  interest  in  this  work,
distribution of the code and wider  porting has been limited pending funding directed
specifically at this effort.

MRNet  is  a  software-based  multicast/reduction  network  for  building  scalable
performance tools, system administration tools, and Grid middleware. MRNet supports
multiple simultaneous, asynchronous collective communication operations. It is flexible,
allowing  tool  builders  to  tailor  its  process  network  topology  to  suit  their  tool's
requirements and the underlying system's capabilities.  MRNet is extensible, providing
an  open  interface  to  allow  tool  builders  to  incorporate  custom  data  reductions  to
augment  its  collection  of  built-in  reductions.  MRNet  has  been  used  for  more  than
multicast  and  simple  data  reductions;  current  applications  include  more  esoteric
reductions such as custom histogram (binning) and clock skew detection s. MRNet has
scaled gracefully in initial tests on up to 1000 tool back-end processes.



Analysis Layer

The TAU project is developing a C++ performance visualization library and associated
toolkit  that supports commonly used 2-D and 3-D performance displays.  The library
will provide high-level classes that can be inherited from for extending the set of display
types.  The toolkit will include visualization GUIs and other support for building new
display tools.   The goal is to build the library in C++ with an abstract  interface to a
performance graphics library, currently being written in OpenGL.

The TAU ParaProf  tool  is a parallel  profile  analysis system being developed to read
parallel  profile data from multiple sources  and across multiple experiments.   It has a
modular  component  architecture  that  can  be  extended  with  new  analysis  and
visualization  modules.   It  can  handle  large-scale  parallel  profiles  (thousands  of
processes).  It is implemented in Java using Swing and is highly portable.  Significant
attention has been paid to code and memory optimization to maintain high interactivity.

The  emphasis  in  SvPablo's  design  was  to  stress  correlation  between  observed
performance and application source code. In its current version, SvPablo contains a set
of hierarchical displays that enable the user to easily correlate all the performance data
captured during application execution with the corresponding line in the application's
source  code.  This  GUI  is  based  on  Motif,  and  contains  a  variety  of  color-coded,
clickable fields that both immediately drive user's attention to critical parts of the code
and  at  the  same  time  allow  the  user  to  check  more  detailed  information  about  the
performance data.  Current  work focuses on support  for  additional  analysis  capability
and corresponding visualization, in the form of compact application signatures that will
be generated by SvPablo's instrumentation library. These signatures are a compressed
representation of a traditional trace, and still contain the salient dynamical features of
the execution.

The  PAPI  project  has  started  developing  a  generic  and  easy-to-use  presentation
component  called  CUBE to display  a  wide  variety  of  hierarchical  performance data.
CUBE will implement a performance algebra providing the ability to perform arithmetic
operations of different CUBE data sets, such as mean or difference, and to display the
result  like the original  data sets.  CUBE might  also serve as a "draft" of a "standard"
profiling data representation.

The  Performance  Modeling  and  Characterization  (PMaC)  Laboratory  tools  Metasim
Tracer  and  Metasim  Convolver  are  components  of  a  toolset  for  the  extraction  of
application  performance  features,  automated  production  of  performance  models,  and
evaluation of parameterized performance models via statistical simulation.  Performance
modeling frameworks based on the toolset have been shown effective in explaining the
performance  of  applications  on  several  current  HPC  systems  and  predicting  their
performance on future systems.



3.2 End State of the Project

If  the  project  were  fully  funded,  the  result  would  be  an  integrated  and  extensible
performance  tool  infrastructure  that  provides  the  components  for  building  flexible
performance analysis tools targeted to meet specific user needs.  The communication
infrastructure would enable efficient and scalable communication among different tool
components,  between  tools  and  application  processes,  and  between  tools  and  the
runtime  system.   The  standardized  measurement  API  would  facilitate  insertion  of
instrumentation  code for  different  purposes  and at  different  stages (e.g.,  source  code
modification,  compile-time,  link-time,  run-time)  in  a  standard  manner.   The  data
management  interface  would  provide  the  necessary  information  about  the  program
source code to enable performance data to be correlated with source code constructs and
would provide library routines for accessing and manipulating this information.   The
performance  database  would  standardize  the  format  for  profile  data  and  provide  a
standard  API  for  accessing  this  data  from  relational  databases.  Standardized  GUI
components in the analysis layer would enable scalable visualization of parallel profile
data for very large numbers of processors and facilitate correlation of profile data with
source code constructs.   

 This  effort  would  impact  the  HPTC community  by  providing  a  firm foundation  on
which to more quickly and more easily build effective performance analysis tools.  This
project would impact the ASCI Tri-Laboratory community in particular by addressing
issues of scalability at the instrumentation, run-time communication, and data analysis
stages of performance tool operation, and issues of time-tractability in the formation and
evaluation of performance models.

3.3  Collaboration

The project would be managed by assigning each area to a lead institution that would be
responsible for setting sub-project milestones and assigning tasks to appropriate team
members to achieve sub-project goals.  For example, University of Tennessee would be
responsible  for the hardware performance monitoring area,  and University of Oregon
would be responsible for the standard instrumentation API.  The source code would be
managed  in  network-accessible  CVS  repositories,  as  is  currently  done  in  the
Paradyn/Dyninst, PAPI and SvPablo projects.  Collaboration with tool developers in the
Tri-Laboratory  community  has  already  occurred  in  the  PAPI,  TAU,  and  Metasim
projects and is expected to continue. For example, John May at LLNL developed code
for software multiplexing of hardware counters that has been incorporated into the PAPI
source code.  Phil Mucci, the lead developer for the PAPI project, has contributed code
to Tri-Lab tools projects. Allan Snavely works closely with Jeff Vetter and Bronis de
Supinski of LLNL in their joint research for the extraction of performance-meaningful



attributes of memory, communication, and I/O access patterns, and they co-advise two
UCSD PhD students in this area. 

The researchers on this project intend to select, generalize and extend where necessary,
and combine the best technologies from their respective projects into an integrated tool
infrastructure.   Thus,  this  project  would  provide  a  unique  opportunity  for  a  focused
effort to develop a coherent framework for large-scale performance analysis.

3.4 Accelerated Development

In  addition  to  the  component-specific  accelerated  development  described  below,  the
main  efforts  to  be  accelerated  are  the  definition  of  tool  interface  standards  and
integration of the components into a coherent tool infrastructure.  One need only look at
the impact of the National Middleware Initiative (NMI) in packaging, documenting and
hardening  Grid  software  to  see  the  value  of  coordination  and  integration.   Similar
success stories exist for cluster software.

Support  for  participation  in  standards-promoting  organizations  such  as  the  Parallel
Tools  Consortium  will  help  with  standardization  of  tool  interfaces.   Involvement  of
vendors  in  this  Open  Source  effort  will  motivate  vendor  implementation  of  the
standards.   Without  direct  monetary  support  for  integration,  tool  development  would
continue  along  the  current  paths  with  some  pair-wise  integration  but  without  a
coordinated effort at multi-way integration.  

Dyninst:  Dyninst  has  been  incorporated  into  several  other  available  tools,  including
DPCL (originally  from IBM and now an  Open  Source  project)  and  Dynaprof.   The
focus  of  this  project’s  efforts  with  Dyninst  would  be  concentrated  in  the  areas  of
making Dyninst more robust and scalable (executables in the size of tens of megabytes
can be slow to startup) and in integration with other tools described in this proposal.

PAPI: OSSODA support would ensure that PAPI could be ported in a timely fashion to
platforms of interest to the NNSA and ASCI communities, including ASCI Purple, Red
Storm and others. It would also provide enhanced opportunities to incorporate advanced
features  such  as  multi-way  multiplexing  for  better  hardware  utilization;  parallel
overflow and profile support;  data-tagged event monitoring;  and more comprehensive
support of events native to specific platforms. Further, greater attention could be paid to
software design changes that would move the PAPI project out of the research realm
and  into  the  realm  of  a  robust  commercial-quality  product,  with  documentation  and
design enhancements to make it more feasible for commercial vendors to develop and
provide their own interfaces to the PAPI library for new hardware architectures.

TDP: The OSSODA support would offer the opportunity to take the TDP library and
fully  integrate  it  with  several  process  management  (scheduling)  environments.  This



level of support will provide the critical mass to make it a desirable porting target for a
variety of runtime tools. While TDP is likely to eventually become widely accepted, we
have the chance to substantially accelerate that acceptance. This acceptance will provide
the ability for tool writers in both big  and small projects to deploy their tools for real
applications in real environments; it will no longer be just the providence of big projects
with staffs that can handle the porting efforts.

MRNet: The MRNet libraries are currently in limited distribution and development for
cluster  and  SP  environments.  The  OSSODA  support  would  offer  several  crucial
advantages: (1) porting additionally process management environments, (2) addressing
technical  issues  relating  to  MRNet  as  Grid  middleware  (e.g.,  security  and
interoperability issues), (3) support and extensive testing.

TAU: The TAU measurement API would be extended to provide the following:
• Per-event measurement specification
• Improved dynamic measurement control
• Better  runtime  performance  data  access  (both  application-level  access  and

external access)
• New parallel tracing library with additional runtime statistics options

SvPablo:  While  we continue  to add additional  features  in SvPablo using  funds  from
other sources, we plan to use OSSODA support  to accelerate the integration between
our future SvPablo versions and the various other tools described in this document. One
of the forms for this integration would be the export of SvPablo-produced performance
data.  We will  create conversion mechanisms allowing those other  tools to access the
SDDF files  with performance  data  captured  by SvPablo.  Similarly,  we intend to use
OSSODA support to promote this tool interoperability in a portable fashion, covering all
the  platforms  of  interest  to  ASCI.  As an example,  we have  developed in  the  past  a
prototype version of a package that produced dynamic instrumentation in SvPablo using
Dyninst,
under Solaris systems. With the new funding, we plan to update that functionality with
the current Dyninst version, and extend it to other platforms where Dyninst is available.
Likewise, we plan to continue using PAPI's new versions to access hardware counter
data in all the platforms where a PAPI port exists.

MetaSim:   Support  would accelerate  porting  MetaSim Tracer  to  run atop Dyninst;  it
would then be hardened and made modular  via an API so that it can be called from
higher-level performance observation frameworks. The result would be memory access
pattern detection capability on all the platforms where Dyninst runs with the ability to
enhance  trace  performance  information  from  hardware  counters  with  additional
information about memory stride and reuse distance at the basic-block level and with
tags back to the source code (something that is not  available from raw counters,  nor
supplied  at  the high  level  today).   Additionally  MetaSim Convolver  would  be  made



modular and integrated into a performance observation framework based on capabilities
of TAU and SvPablo. The result would be performance modeling capability so that on
could  both  observe  factors  influencing  performance  on  existing  machines  and play
“what-if”  to explore performance implications of varying attributes of the underlying
machine (such as latencies and bandwidths of the memory subsystem or communication
fabric) or the source code (such as better blocking for cache in loops or sending fewer,
larger messages in functions or loops).

3. 5 Testing and Integration Strategy

A successful testing and certification program for a coordinated Open Source initiative
must be built  on a comprehensive repository of test problems.  Test problems should
range in sizes from small kernels to full-scale applications and, along with testing for
other  areas,  should be designed to test  correctness,  efficiency,  scalability,  robustness,
interoperability and easy of use of compilers and debugging and performance analysis
tools.  We do not consider the overall construction of the test problem repository to be
part  of  our  effort,  but  we expect  to  contribute  test  programs to  this  repository  (e.g.,
validation  benchmarks  for  hardware  performance  data,  example  programs  for
performance  instrumentation  with  different  parallel  programming  models  and  using
different instrumentation strategies). 

The  testing  strategy  for  the  software  proposed  in  this  project  is  to  develop
comprehensive test suites for each of the component areas, and for pair-wise and multi-
way integration of the components, and use automated multi-site daily regression tests.
Currently, the Dyninst/Paradyn project uses a suite of daily regression tests run on 11
different systems at the Universities of Maryland and Wisconsin.

In addition,  we plan to have a set of beta testers who collectively have access to the
targeted set of platforms.  These beta testers would run the test suites as well as test beta
releases of the components with additional test programs and applications (both from
the test problem repository and from their own applications) whenever possible.  This
testing strategy would be similar to that used for the PAPI project, which has a suite of
test programs (which could use improvement however) and an enthusiastic cadre of beta
testers.  A second stage of beta testing, after the bugs reported in the first stage have
been  fixed,  would  take  place  at  scale  on  the  system  test  and  certification  facility
described in this RFI.

3.6 Technology Productization Strategy

Our goal is to produce an interoperable collection of tools and associated framework to
support  performance measurement  and evaluation on the ASCI computing platforms.



For this effort to have long-term returns, the tools and framework should live beyond
the time frame of this proposal.

Current State of Affairs

The current  state of available performance tools  has demonstrated clearly  that a new
approach is needed. This approach must encompass integration and support.  Integration
is  crucial,  and  we  have  addressed  that  topic  previously  in  this  document.  Note  that
specific funding for this integration effort will make an interoperable collection of tools
possible.

Support  is  a  more  complex  issue.  As  a  result  of  economic  realities,  there  are  few
examples  of  useful  tools  available  on  a  variety  of  platforms.   We  first  discuss  the
reasons for this situation and then propose a possible direction.

Machine vendors have nice point-solution successes for individual platforms but they no
incentives for porting their tools to other platforms. After all, why would a vendor want
to make another vendor's platform more desirable and useful? While this strategy is self-
defeating,  it  is  difficult  for  vendors  to  escape  this  mind-set.   Note  that  as  primarily
hardware vendors, this high-end software market is too small to be of interest in and of
itself.  

Tool  vendors,  typically smaller  software companies such as Pallas,  have some cross-
platform  successes.  However  these  companies  have  significant  investments  in  their
software,  and  their  software  is  their  primary  intellectual  asset.  Creating  open  source
versions  of  their  tools  is  typically  considered  a  bad  idea,  giving  away  their  most
valuable assets. The small size of these companies makes it difficult for them to keep up
with  both  porting  and  new  technology  developments.  Totalview  is  an  interesting
counterexample, which was only make possible by a continuous infusion of government
money from a variety of agencies and from a few companies.

The open source community, as exemplified by GNU, develops sophisticate software on
a wide variety of platforms. Individuals, either with or without the official support of
their employers,  contribute their time to produce and support  this software. Note that
this software is "big market" software, such as the operating system or compilers.  As
such,  it  involves  an  extremely  large  user  and  developer  communities  worldwide.
Performance  tools,  especially  targeted  at  high-end  machines  do  not  fit  this  profile
because they have significantly smaller communities.

Consortiums such as the X.Org produce widely distributed open source systems.  X.Org
distributes  a  well-regarded  version  of  the  X11  window  system  for  many  different
platforms.  The funding model is buy-in support  from member organizations such as



Compaq, IBM, HP, SGI and Sun. Members pay from $15,000 to $50,000 per year to
support this effort (with lower payments for Associate Members). Note that there is also
a GNU-like team, called XFree86, working along with X.Org.

Proposal for Long Term Support

We  propose  a  three-pronged  approach  to  establish  wider  acceptance  and  long-term
support of the software that we produce.  This approach is not unique to performance
tools and might  be adapted  by other  related ASCI  open source  software  efforts.  We
propose to establish a High-end Performance Tool (HPT) Consortium. This consortium
would  blend three components,  similar  to X.Org,  but  with medium term funding for
core activities:

• Open source independent developers: Many of these developers would come from
the  groups  participating  in  this  proposal,  but  we  also  expect  participation  from
software developers in industry and the government labs.

• Consortium  members:  There  are  several  vendors  with  large  stakes  in  high-
performance  computing.  These  vendors  may  see  a  modest  membership  fee  as  a
cheap path to supporting tool availability. If we were able to attract a steady-state
membership size of a half dozen, this would provide a solid core to help fund a web
site, coordination of distribution, documentation, and publicity.

• Government  support:  To guarantee  medium-term availability  of  the  performance
tools,  a  funded  team  of  integrators  and  testers  would  provide  continuity  and
reliability to our efforts. It would be the job of the team funded by this support to
ensure  that  new  developments  are  uniformly  available  on  all  platforms  and  all
changes are tested for all configurations. These tasks are extremely difficult outside
a core group.   This level  of  software quality could be supported (with the above
components)  at  the  cost  of  three  to  five  FTE's  per  year.   The  FTE's  could  be
centralized at one of the participating sites or distributed.  Note that  when we say
"medium term", we mean the five-year period following the end of this supported
research  (years  4  through  8).  The  hope  is  that  after  five  years,  the  tools  would
mature to the point that they have sufficient users and developers so that government
support is no longer needed.

Summary

The funding of this proposal would provide the impetus to develop core group of tools
for performance measurement and evaluation. This funding is the necessary key to start
this  open  source  effort.  The  medium-term support,  combined  with  a  well-organized
consortium,  could  establish  the  long-term  viability  of  this  software  for  the  ASCI
platforms.  We have previously had close collaborations with industry (e.g., with IBM,



Intel,  HP, Cray) on projects such as PAPI and Dyninst,  and we expect collaborations
with these companies to continue and to encourage their membership in the proposed
consortium.

3.7  Project Budget

We propose  to fund this  effort  over  three years at  a total  of $5 million for  the total
period. The funding would be divided between the six participating organizations.

Year  1: During  the  first  year,  inter-component  interfaces  will  be  defined  and robust
versions of the components will be released, conforming to these new interfaces. The
initial version of the components will be targeted at two major computing platforms of
interest (to be decided, based on consultation with DOE). These components will be the
first product of the HPT Consortium.

Year  2: The  second  year  will  start  with  extensive  intercomponent  testing  and
establishment  of  the tool  framework.  The second year  will also start development  of
end-user tool functionality. Inter-component interfaces will be re-evaluated at this stage
and adjusted as needed. At least one additional computing platform will be selected at
this time. The HPT Consortium will start outreach to establish commercial members and
sponsors.

Year  3: The  third  year  will  produce  an  initial  set  of  end-user  tools  based  on  our
components and framework. During this time, we will test these tools with applications
selected under consultation with the Tri-Labs. During the last six months, we will work
with  Consortium  members  to  develop  commercial  transitions  of  the  framework  and
tools. This last stage will also include seminars and tutorials for the HPC community at
large.

3.8 Intellectual Property and Open Source License

All  tools  and  components  developed  under  this  funding  will  be  available  under  a
uniform open source license, modeled after that used by NCSA.

10.4  Area specific information

The systems targeted by the tool  infrastructure are current  and future ASCI systems,
including  AIX/POWER3/4/5,  Tru64/Alpha,  IRIX  MIPS,  Linux/IA-32,  and
Linux/Opteron.   Additional platforms will be supported as resources allow.  The future
ASCI Red Storm and BlueGene/L platforms will be supported.



Languages that will be supported include Fortran 77/9x/200x, C, and C++, as well as
mixed language programs.  Parallel programming models that will be supported include
MPI, OpenMP, Pthreads, and mixed mode (e.g., MPI/OpenMP).
   
The Red Hat Linux distribution will be used for development.  The infrastructure will be
updated to the most recent stable Linux release on an ongoing basis. 

The NNSA/ASCI Open Source initiative provides a unique opportunity for integration
of  the  compiler  and  tools  areas.   Higher  levels  of  compiler  optimization  apply
increasingly  complex  transformations  and  optimizations  to  user  source  code.   The
resulting  executable  code  can  be  difficult  to  map  back  to  the  original  source  code,
limiting the effectiveness of source-level debuggers and performance analysis tools.  A
high performance compiler should provide source-level tools with detailed information
about  the transformations  and optimizations  that  have  been applied,  using a standard
interface to do so.   The compiler can assist with gathering performance data through
instrumentation of the generated code.  Being able to specify collection of various levels
of profiling and tracing data using a simple set of compiler options would improve ease
of use of performance tools.  In the other direction, performance data can be fed back
into the compiler to provide more effective optimizations in the next development cycle.

Our  work  would  benefit  from  integration  with  the  open  source  compilers  proposed
under  this  program  by  linking  of  the  source  code  to  performance  tools  that  need
program-level  information  for  instrumentation,  analysis,  and  results  display.   This
would  be  done  by  bridging  the  compiler  front-end  technology  to  PDT's  program
database.   Such a linkage has already been demonstrated  with PDT's own integrated
parsers.  Close cooperation with compiler efforts will guarantee that open source parsers
and an XIR will function well with PDT, ensuring a evolutionary path for existing and
to-be-developed PDT-based program and performance analysis tools.  As an example of
this approach, University of Oregon is currently working with the University of Houston
on the translation of Open64 WHIRL to PDB format.  In addition, Code Sourcery, LLC
has shown interest in this approach as it relates to their proposed open source compiler
activities.
    
Another  area  with  which  interaction  would  be  beneficial  is  the  High-Performance
Computing Cluster Distribution area.  A desirable enhancement to the Linux Kernel that
could  be  added  to  the  list  in  §6.3  would  be  incorporation  of  the  perfctr patch  that
enables access to the hardware performance counters so that it is part of the mainstream
Linux distribution and no longer requires a patch.  

Another area with which interaction would be beneficial is the Resource Management
area (Appendix B).    Resource managers can help allocate and schedule the resources
needed by the run-time tool communication infrastructure and by interactive run-time
analysis tools.   The run-time system can assist with automated run-time performance



instrumentation.  Integration  of  tool  invocation  with  the  job  scheduling  system  can
improve ease of use of the tools and provide support for run-time interaction and real-
time analysis.  In the other direction, performance data produced by tools could be used
to improve resource management decisions.

Web Sites and Selected References for More Information

Dyninst:  
http://www.dyninst.org/

PAPI:  
http://icl.cs.utk.edu/papi/

MRNet and TDP:

            http://www.paradyn.org/

B.P.  Miller,  A.  Cortes,  M.  Senar,  M.  Livny,  “The  Tool  Daemon  Protocol”,
SC’03,  Phoenix, AZ, November 2003.

P.C.  Roth,  D.C.  Arnold  and  B.P.  Miller,  “A  Software-Based
Multicast/Reduction  Network  for  Scalable  Tools”,  SC’03,  Phoenix,  AZ,
November 2003.

SvPablo: 
http://www-pablo.cs.uiuc.edu/

TAU:  
http://www.cs.uoregon.edu/research/paracomp/tau/tautools/

MetaSim:  
http://www.sdsc.edu/PMaC/


