Performance Technologies for Peta-Scale Systems:

A White Paper Prepared by the Performance Evaluation
Resear ch Center and Collaborators

David H. Bailey (LBNL); Bronis de Supinski (LLNL), Jack Dongarra (U. Tenn.),
Thomas Dunigan (ORNL), Guang Gao (U. Del.) , Adolfy Hoisie (LANL),
Paul Hovland (ANL), Jeffrey Hollingsworth (U. Mar.), David Jefferson (LLNL),
Chandrika Kamath (LLNL), Allen Maony (U. Oregon), Boyanna Norris (ANL),
Daniel Quinlan (LLNL), Sally McKee (Cornell U.), Celso Mendes (U. 1ll.),
Shirley Moore (U. Tenn.), Daniel Reed (U. 1l.), Allan Snavely (SDSC),
Erich Strohmaier (LBNL), Jeffrey Vetter (LLNL), Patrick Worley (ORNL)

Prepared in Response to the Invitation to Submit White Papers on High End Computing

May 14, 2003



Introduction

Future-looking high end computing initiatives will deploy powerful, large-scale computing
platforms that leverage novel component technologies for superior node performance in ad-
vanced system architectures with tens or even hundreds of thousands of nodes. Recent ad-
vances in performance tools and modeling methodol ogies suggest that it is feasible to acquire
such systems intelligently and achieve excellent performance, while also significantly reducing
the user time required to attain high performance. These developments are relevant to several
aspects of future HEC technology outlined in the recent HECRTF white paper request, in par-
ticular items 5.4, 5.5, 5.6, and 5.8. We envision the following specific capabilities:

1. Performance modeling tools, available to researchers and vendors, will extrapolate perfor-
mance from prototype systems to full-scale systems, and even accurately predict performance
behavior before systems are manufactured, thus enabling both improved designs and more in
telligent selection of systems in procurements.

2. System simulation facilities, implemented on highly paralel platforms and available to re-
searchers and vendors, will for instance realistically model the performance of a specific inter-
processor network design running a specific scientific application code. As with item 1, these
facilities can lead both to improved designs and procurement decisions that yield significantly
greater sustained performance for targeted scientific applications.

3. A program monitoring and analysis infrastructure scalable to 100,000 processors and be-
yond, will provide performance information at every level of system’s memory hierarchy and
network. This infrastructure will build upon knowledge discovery and data mining techniques
to be significantly more scalable and easier to use than the current infrastructure, and a standard
version will be incorporated in most high-end systems.

4. Self-tuning software facilities, now available only for a few specialized libraries and requir-
ing separate test runs, will be integrated into a broad range of scientific application codes.
Eventually these facilities will make use of the performance monitoring infrastructure men
tioned above, and will extend to dynamic optimization at the subroutine level.

Each of these capabilities appears to be feasible, based on successes in current research
projects. However, while the prototypes of many of these facilities are already in hand, signifi
cant additional research and development will be required to realize the full potential described
above. Inthe following, we sketch some of this required research.

Performance Monitoring Infrastructure

Informal approaches to parallel performance monitoring and analysis may be acceptable at the
present time, but such approaches will be woefully inadequate once systems are fielded with
multiple levels of parallelism throughout the system’s compute nodes, network, and memory
hierarchy, and including tens or hundreds of thousands of compute nodes. It is also unlikely
that we can effectively model and utilize novel architecture systems without the aid of an ad
vanced monitoring infrastructure.

Advanced hardware performance monitoring facilities will be required to obtain performance
data without significant perturbation. A key chalenge beyond counting of events throughout
the system isin gathering and interpreting the exploding quantity of data. Even now, collecting



memory access pattern information, which is often crucial for understanding performance on
deep-memory-hierarchy machines, implies a three orders-of-magnitude slowdown. Yet many
applications of interest run for hours or days, during which their performance behavior changes
frequently. Systems with tens or hundreds of thousands of processors will greatly compound
this performance data analysis problem. Several aternatives are being explored, ranging from
clever statistical sampling schemes to on-the-fly analysis of performance data that would re
duce the amount of datainvolved. Meaningful analysis of this data will require advanced tech
niques such as multivariate statistical methods , knowledge discovery tools, time series analysis
and advanced visualization schemes to distill important facts from these potentially massive
data sets. This analysis can then be used to select the key features used in monitoring perfor-
mance and to build predictive models of the performance of a single processor as well as the
entire parallel system.

A unigue opportunity exists for performance researchers to work with vendors to improve the
selection of hardware performance data. Ideally, design of performance monitoring hardware
should be driven by data input needs for application performance modeling and analysis, rather
than modeling and analysis capabilities being limited by the available data. For example, one
key item that current hardware monitors lack is information regarding memory addresses, such
as data on gaps or patterns between successive addresses. This information would provide
valuable insights into the memory behavior of a user program. Along this line, we observe that
the counters currently available have been designed primarily to address the needs of vendor
benchmark personnel. Hopefully in the future vendors will consider counters useful to applica
tion developers and performance tuners as well, for example by implementing the PAPI pro-
posed standard metrics.

Another area where the performance research and vendor design communities could work to-
gether isto extend inter-processor network hardware performance monitoring facilities to appli-
cation performance analysis. Although network hardware often includes some performance
monitoring facilities, the lack of support to associate performance data with a specific applica
tion code significantly hinders applying the data to application performance evaluation. The
use of reconfigurable technology (such as FPGAS) might be of use to support performance-
monitoring applications, for both hardware engineers and end users. Determining what events
are most important to monitor, designing systems to support low-overhead monitoring that gen
erates information useful to application developers, and designing software to utilize this infor
mation, are important topics of future research.

Any improvements that are made in the capabilities of performance tools must be matched by a
corresponding improvement in ease of use, or otherwise they will have only limited impact in
the overall goals of reducing time to solution and simplifying system acquisitions. In this re
gard, it isinstructive to observe that while many professionals in the HEC field have produced
web content, very few have taken formal training in HTML. Instead, most have merely copied
and adapted a colleague’s HTML or used higher-level tools. In asimilar vein, we envision a set
of standard templates for performance analysis that automatically engage a typical performance
analysis scenario, using advanced tools. Monitoring should be as automatic as possible. For
example, users should be able to specify data of interest at a higher level and in a standard man-



ner across systems, without having to install the monitoring software themselves or write low-
level library calls. High-levels tools could significantly increase the user base of performance
facilities. These facilities would also apply existing tools for knowledge discovery to perfor-
mance data. The application of techniques such as decision trees to performance data has been
initially explored [19, 14], but clearly significant additional research in this area is needed.

Performance M odeling

Item 5.8 in the current call emphasizes the need to develop improved methodol ogies for procur-
ing high-end computer systems. As systems become ten times or more larger in memory and
computing power than those in operation at the time of the acquisition, both the challenge of
making informed procurement choices, and the penalty for mistakes, will be correspondingly
greater. Novel architectures, distinct in design and technology from any existing systems (such
as those being explored in DARPA’s HPCS program), will compound this challenge.

The emerging technology of performance modeling holds the key to meeting these challenges.
For example, accurate performance models for severa full applications from the ASCI work-
load [8, 11, 12] are routinely utilized for system design, optimization and maintenance. More
over, a similar model has been used in the procurement process for the ASCI Purple system,
predicting the performance of the code SAGE on several the systems in a recent competition.
Alternative modeling strategies have been used to model the NAS Parallel Benchmarks, several
small PETSc applications, and the applications POP (Parallel Ocean Program), NLOM (Navy
Layered Ocean Model), and Cobal60, across multiple compute platforms (IBM Power 3 and
Power 4 systems, a Compag Alpha server, and a Cray T3E-600) [4, 17]. These models are ex
tremely accurate across a range of processors (from 2 to 128), with errors ranging from 1% to
16%.

These results suggest that it is possible to accurately predict the performance achieved by a fu
ture system (much larger in size and employing a distinct design from hardware currently in op-
eration) , running a future scientific application (much larger in problem size than currently be
ing run). We can even envision that a future call for proposals for a system procurement will
specify that the vendor run some small loops or other simple test code on the vendor’s system
simulator (or even on prototype hardware) and report the results, thus providing the required in
put data for performance models of key applications. Decision makers would have at their dis
posal not only performance information but also the capability to pursue “what if” scenarios.
Other uses include improved system configuration and system maintenance [4, 8, 9, 11, 17].

Executable analytical performance evaluation also shows promise. These techniques can eval-
uate early stage architecture designs over a wide operating range, and are thus helpful in identi
fying advantageous architectural features, before instruction set architectures and other features
are firmly established, and before system software (runtime systems or compilers) is available.
The methodology here is to model program execution through a program graph that models
thread-level parallelism in the application. The program graph is executed on the architecture
model, while the resulting analytical model is solved using a queuing network tool enriched
with synchronization. This approach has been applied to evaluate the impact of “ percolation,”
which wasfirst proposed for HTMT, and is now being studied under DARPA HPCS funding.



Performance models can even be used within a user code to control the execution dynamically
for best performance. Along this line, some researchers are considering using simple perfor-
mance models to improve load balancing in unstructured grid applications. All of this under-
scores the need for a variety of performance modeling methodologies, ranging from simple,
curve-fitting approaches to sophisticated tools that perform a thorough inventory of al opera
tions performed by the target application program on a particular system. However, much work
is required to further automate and reduce the complexity, “craftiness” and cost of the modet
ing work. In addition, more work is needed define a better interface between “traditional
tools” (such asprofilers, timers and hardware performance monitors) and modeling tools.

System Simulation

System simulation is another mechanism that could provide greater understanding of perfor-
mance phenomena. At the recent High-Speed Computing Conference in Oregon, one speaker
noted that although computational scientists have become highly skilled in simulating physical
phenomenon, as yet they have not exploited this technology to understand the performance be
havior of their applications. This indicates a “last mile” disconnect: a few system simulators
are available in the research community [16], and vendors often develop cycle-accurate or near-
cycle-accurate simulators as part of their product development, but computational scientists
nonetheless rarely use such tools to understand or predict the performance of their applications.

Several challenges must be overcome for these simulators to be useful to application perfor-
mance understanding. Perhaps most importantly, simulator execution times required to analyze
performance for even a small loop are very large; the analysis of a full-length application code
has been out of the question. Another common weakness of these simulators is that they typr
cally target only single processor systems, or at best shared memory multiprocessor systems.

But with the emergence of highly parallel computing platforms, we can consider highly detailed
parallel simulations of scalable systems. Low-level processor-memory behavior can be mostly
decoupled from the analysis of inter-processor network phenomena. Then, once the communi-
cation behavior of an application has been profiled, one can simulate its inter-processor net
work behavior by generating a sequence of communication operations on each node, mimick-
ing the statistics of frequency and message length typical of the program’s phases.

Ideally, we envision an open-source architectural simulation framework and API that enables
plug-and-play between separately-developed simulators for different architectural features (e.g.,
PIM, polymorphic multithreaded processor, and network), and would also enable zoom-out and
zoom-in between statistically-based and cycle-accurate simulation techniques. This framework
will, however, require significant advances in simulation methodologies in order to support
concurrent use of modules running at different time-scales and based on different simulation
techniques. For example, current architectural simulation engines tend to be time-stepped; but
realistic models of scalable hardware and software are much too dynamic, asynchronous, and
temporally sparse for that kind of synchronization. Instead, we anticipate that the simulations
will be decomposed into logical processes, and will be synchronized by either conservative or
optimistic methods (or both), as developed in the parallel discrete event simulation (PDES)
community [7, 10]. With that approach, the high degree of real parallelism these systems ex-



hibit will tend to translate to asimilarly high degree of computational parallelism in the smula
tion aswell.

Libraries, Compilersand Self-Tuning Software

It is not sufficient to merely study the performance of large future systems — facilities for auto
matic and/or semi-automatic performance tuning must also be improved. One approach here is
to expand the scope of optimized scientific libraries for high performance computing. Three
canonical examples are the ScaLAPACK, PETSc, and the NWChem libraries. Some related ef-
forts include the emergence of the Community Climate Code (CCM) in the climate modeling
community and similar efforts to unify fusion and accelerator modeling computations.

One of the more promising developments in this arena is the recent emergence of “self-tuning”
library software. Examples include the FFTW library and versions of ATLAS, ScaLAPACK,
and LFC library routines . The approach isto run, in an initialization step, a program that tests
a number of different computational strategies (such as different parameters for array padding
or cache blocking). The tuning program then selects the option that demonstrates the best per
formance in the test run for future production runs. This general approach can be extended to
almost any large-scale software library. However, the process of devising tests, determining
optimal parameters and using the resulting parameters in the production code must be simpli-
fied if this general scheme is to be implemented widely. One possibility here is to combine
rapid, on-the-fly performance modeling with such self-adaptive, self-tuning codes to narrow the
parameter space for trying different computational strategies.

Eventually these self-tuning facilities can be incorporated directly into conventional user code.
In other words, we foresee the time when self-tuning facilities will be understood well enough
that they can be inserted by a preprocessor (and eventually perhaps by a compiler) directly into
auser code at the start of the main program, or even at the subroutine level. Parallel processing
can be utilized in a novel way here. The first iteration can be performed using different low-
level data layout options on each processor. Then after the first iteration, the program uses the
best performing choice on all nodes. This may seem futuristic, but in reality the basic facilities
have already been demonstrated in current research (mostly in the PERC project), including
self-tuning library software, performance assertions, compiler enhancements and semiautomatic
code modifications . In addition, the Active Harmony system (another PERC activity) has
demonstrated the ability to automatically improve the performance of some large scientific ap-
plication programs, including the POP ocean model code.

In this regard, it is instructive to recall the history of vector computing. Initially, compilers of
fered little or no assistance — it was necessary for programmers to explicitly vectorize loops.
Then semi-automatic vectorizing compilers became available, which eventually were quite suc
cessful. The final step was run-time vectorization, with compilers generating both scalar and
vector code, and then deciding at run time if the vector code is safe. We see asimilar long-term
potential for self-tuning code that makes use of performance monitoring. Other ideas for com
piler technology that show promise include dynamic compilation and compile-time searching
for optimal run-time aternatives, including array blocking, loop fusion and fission, flexible
data layout and array padding. Since these changes in several cases go beyond the limits of



what is permissible according to existing language standard definitions, this points to the need
to work with language standard committees in tandem with this research.

Conclusion

Designing, deploying and programming the next generation of high-end computing platforms,
which will feature tens or hundreds of thousands of processors, with new designs such as pro
cessor-in-memory or multi-threaded architectures, requires advanced tools (both hardware and
software) to monitor, model and control performance. We believe that such facilities can be de
veloped, although there are many questions that remain to be answered.



References:

[6] D.H.Ahn,J. S. Vetter, “Scalable Analysis Techniques for Microprocessor Performance Counter Metrics,”
Proceedings of SC 2002, |IEEE, Nov. 2002.

[7] R.P.BoschJr., “Using Visudization to Understand the Behavior of Computer Systems; Stanford University
Ph.D. dissertation, Aug. 2001.

[8] S. Browne, J. Dongarra, G. Ho, N. Garner, P. Mucci, “A Portable Programming Interface for Performance
Evaluation on Modern Processors”, International Journal of High Performance Computing Applications vol.
(2000), pg. 189-204.

[9] L. Carrington, A. Snavely, N. Wolter, X. Gao, “A Performance Prediction Framework for Scientific Applica
tions,” Workshop on Performance Modeling and Analysis - ICCS Melbourne, June 2003.

[10] J. Dongarraand V. Eijkhout, “ Self Adapting Numerical Algorithm for Next Generation Applications”, to ap-
pear in International Journal of High Performance Applications and Supercomputing 2003.

[11] M. Frigo and S. Johnson, “FFTW: An Adaptive Software Architecture for the FFT”, Proceedings of the Inter-
national Conference on Acoustics, Speech, and Signal Processing Seattle, WA, May 1998.

[12] R. Fujimoto, Parallel and Distributed Simulation Systems Wiley Interscience, January, 2000.

[13] A. Hoisig, O. Lubeck, H. Wasserman, “ Performance and Scalability Analysis of Teraflop-Scale Parallel Archr
tectures Using Multidimensional Wavefront Applications,” The International Journal of High Performance
Computing Applications, vol. 14, no. 4 (Winter 2000).

[14] A. Jacquet, V. Janot, R. Govindargjan, C. Leung, G. Gao, and T. Sterling, “An Executable Anaytica Perfor-
mance Evaluation Approach for Early Performance Prediction”, Proceedings of IPDPS' 03, 2003.

[15] D. Jefferson, B. Beckman, F. Widland, L. Blume, M. DiLoreto, P. Hontalas, P. Laroche, K. Sturdevant, J. Tup
man, V. Warren, J. Wedel, H. Younger, S. Bellenot, “ Distributed Sirrulation and the Time Warp Operating
System”, 11th Symposium on Operating Systems Principles, Austin, TX, Nov., 1987.

[16] D. J. Kerbyson, H. Alme, A. Hoisie, F. Petrini, H. Wasserman, M. Gittings, “ Predictive Performance and Scala
bility Modeling of aLarge-Scale Application”, Proceedings of SC2001, |EEE, Nov. 2001.

[17] M. Mathis, D. Kerbyson, A. Hoisie, “A performance model of non-deterministic particle transport on large-
scalesystems”, Workshop on Performance Modeling and Analysis - ICCS Melbourne, June 2003.

[18] D. J. Kerbyson, H. J. Wasserman, A. Hoisie, “ Exploring Advanced Architectures using Performance Predic
tion,” inInnovative Architecture for Future Generation High-Performance Processors and Systems |EEE
Computer Society Press, 2002, pg. 27-37.

[19] B. P. Miller, M. D. Calaghan, J. Cargille, J. K. Hollingsworth, R. B. Irbin, K. Karavanic, K. Kunchithapadam,
T. Newhall, “ The Paradyn Parallel Performance Measurement Tools,” |EEE Computer, vol. 28 (1995), no. 11,
pg. 37-46.

[20] D. Quinlan, M. Schordan, B. Philip and Kowarschik, M., “ Parallel Object-Oriented Framework Optimization,”
to appear in Special 1ssue of Concurrency: Practice and Experience 2003.

[21] M. Rosenblum, “SimOS,” available at http://simos.stanford.edu.

[22] A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Badia A. Purkayastha, “ A Framework for Performance
Modeling and Prediction,” Proceedings of SC2002, IEEE, Nov. 2002.

[23] Tapus, C., I.-H. Chung, and J.K. Hollingsworth, “ Active Harmony: Towards Automated Performance Tuning”
in Proceedings of SC2002, IEEE, Nov. 2002.

[24]J. S. Vetter, “Performance Analysis of Distributed Applications using Automatic Classification of Communica
tion Inefficiencies,” Proceedingsof the ACM International Conference on Supercomputing (ICS) ACM Press,
2000.

[25]J. S. Vetter, P. Worley, “ Asserting Performance Expectations,” Proceedings of SC2002, IEEE, Nov. 2002.

[26] M. Wang, T. Madhyastha, N. H. Chan, S. Papadimitriou, C. Faloutsos, “ Data Mining Meets Performance Evat
uation: Fast Algorithms for Modeling Bursty Traffic, International Conference on Data Engineering, 2001.

Contact Information:

David H. Bailey

Lawrence Berkeley National Laboratory
Berkeley, CA 94720



Email: dhbailey@Ibl.gov
Tel: 510-495-2773



