Design Considerations for Shared Memory MPI
Implementations on Linux NUMA Systems: An
MPICH/MPICH?2 Case Study.

-0r-

There, but not back again: A story about the importance of
being in the right place at the right time.

Per Ekman (pek@pdc.kth.se)

PDC/KTH, Stockholm, Sweden
http://www.pdc.kth.se/~pek/linux/

-with-

Philip Mucci (mucci@cs.utk.edu)
PDC/KTH, Stockholm, Sweden, ICL/UTK, Knoxville, Tennessee
Chris Parrott, Bill Brantley
Advanced Micro Devices, Austin, TX

Introduction/Abstract

This paper describes our work to make MPICH and MPICH2 more tolerant of Non Uniform
Memory Access architectures (NUMA). MPICH and MPICH?2 are freely-available
implementations of the MPI and MPI-2 standards from Argonne National Laboratory. The goal
was to increase the delivered performance of MPI applications by improving memory placement of
the application and the MPI library. The target platform was the AMD Opteron microprocessor
running SuSE Linux 9.1 Pro. Due to an on-chip memory controller, Opteron-based systems have
NUMA properties in any multiprocessor configuration'. In the following pages, we discuss our
modifications to the Linux kernel to do monitoring of page placement and our NUMA
modifications to the MPICH and MPICH2 source code bases. We present some benchmarks
demonstrating the performance impacts of these changes. We conclude with a discussion of the
results and some suggestions regarding extensions of this work.

Some Notes on Terminology

The term "node" is used here as it is in the Linux kernel; a physical CPU that may possibly have
some local memory attached. The term should not be confused with nodes in a cluster; those are
referred to as "cluster nodes". A "system" refers to an entire NUMA machine, often a cluster node.

The MPICH devices use different terms to denote the data structure used to communicate
data between processes. That type of data structure is uniformly referred to as a "packet" here. A
"message" is the data buffer to send, and possibly, the data structure encapsulating it.

1 The notable exception being a single chip, multi-core configuration.

The term "local memory" does not dictate that the memory is non-shared, merely that it
lives on the same node as the process referencing it. Non-shared memory is called "private
memory". "Remote memory" is memory in another node and can be either shared or non-shared
(private). The term "global" signifies that the data it refers to is shared by all processes .

Unless otherwise stated, "page-aligned" means that the start address of the memory area
coincide with a page address AND that the size of the area is a whole number of pages so that the
first byte after the end of the area lies in a new page.

Linux Kernel and NUMA
The three main characteristics of the Linux 2.6 kernel that are of interest to us are:
® Processes have weak processor affinity.

The scheduler attempts to keep processes running on the same node. It will move processes
between nodes to maintain adequate load balancing.

® Memory is physically allocated upon first touch.

Memory pages owned by a process are allocated on the node where they are first
referenced. By first reference, this means a write to anonymous pages (like fronmalloc()),
or a read/write from/to for named pages (swapped or mmap'ed files). If the node on which
the process is running has no free memory left, the memory will be allocated from the
“topologically closest” node that has enough free memory. The determination of which
node is closest is made at boot time.

There are three cases to consider:
1. Copy-on-Write (COW) inheritance.

Anonymous virtual memory that has been inherited from the parent process is
mapped to the same physical page frames used in the parent process. These frames
are marked as Copy-on-Write. When either the parent or the child process writes to
a page, it breaks the COW and a new page frame will be allocated for that process.
This means that, if the parent process breaks COW for a page, both copies of that
page will end up living on the node that the parent process runs on.

2. Initial allocations map to the “zero” page.
Anonymous virtual memory, that has been newly allocated from the kernel, is
initially mapped to the Copy-on-Write "zero"-page. A write to a virtual address
then breaks the COW and a physical page frame will be allocated for that address

on the node on which the touching process is running.

3. Named pages (pages that are backed by a file or swap device).

Named pages are allocated on the node where the process doing the reference (read
or write) is running.

® Pages are not migrated.

Pages that have been touched will stay on the same node that they were allocated on until
they are deallocated or paged out to secondary storage.

The behavior of the Linux kernel can be summarized quite simply: Processes have soft affinity and
memory pages have hard affinity. There are two factors that determine whether memory ends up
on the “right” node or not :

® [s the first write to each page issued on the “correct” node (the node that will compute on them
later)?

® Are the data structures inside shared memory regions properly page aligned?
Monitoring Memory Placement in the Linux Kernel

In order to adequately diagnose poor memory placement, it is necessary to figure out which node a
page of virtual memory lives on. In order to do that, the virtual address must be translated to the
corresponding physical address.? Once this mapping is obtained, the physical address of the page
can be compared to the physical memory map to figure out which node the page lives on.
However, doing this mapping for all active virtual pages on the system results in information
overload. A better way is to obtain this mapping on a per-process basis and aggregate the data into
per-node groups of contiguous page ranges. This allows clear discontinuities to be spotted. As part
of this work, we have implemented the above functionality in two separate patches to Linux 2.6.8.
The patches provide information about the memory placement via special files in the /proc
filesystem.

® /proc/<PID>/pagemap

This file contains a listing of all pages used by the process. Each page is marked with the
corresponding node number and copy-on-write status, meaning that it may change node
later if one of the processes sharing the page breaks the copy-on-write status.

cat /proc/self/pagemap
VMA 0 start 400000 end 404000
00400000-00400fff node 1
00401000-00401fff node 1

® /proc/<PID>/nodemem

This file contains aggregated virtual memory ranges that reside on the same node.

2 Unfortunately, we were unable to find a documented interface in our Linux installation to perform this mapping.
Andi Kleen's libnuma apparently has an undocumented set of flags to get mempolicy() where it can perform
virtual address to physical node mappings.

cat /proc/self/nodemem
0000000000504000-0000000000525fff node O

0000002a9576a000-0000002a9576afff node 3
Process running on node O

Process has 2392064 bytes (584 pages) on node 0
Process has 122880 bytes (30 pages) on node 1
Process has 122880 bytes (30 pages) on node 2
Process has 90112 bytes (22 pages) on node 3

To further help our analysis, a perl script was developed that parsed the output of the
/proc/<PID>/nodemem file, as well as the listing from /proc/<PID>/maps. This allowed precise
attribution of pages to different regions of the executable.

./maps.pl 16518
running on node 1

Process
Process
Process
Process
Process
Process
Process
Process
Process
Process

has
has
has
has
has
has
has
has
has

12341248 bytes (3013 pages) on node O
397312 bytes (97 pages) on node 1
180224 bytes (44 pages) on node 2
172032 bytes (42 pages) on node 3

0 bytes (0 pages) on node 4

0 bytes (0 pages) on node 5

0 bytes (0 pages) on node 6

0 bytes (0 pages) on node 7

0 bytes (0 pages) not in core

VMA 2a95556000-2a9556a000 /1ib64/1d-2.3.3.s0
5 pages on node 1

5 pages on node 3

39 pages on node 0

4 pages on node 2

VMA 2a95b12000-2a95¢c18000 /1ib64/tls/libc.so.6
33 pages on node 1

31 pages on node 3

447 pages on node 0

35 pages on node 2

VMA 400000-472000 /bin/bash

114 pages on node 0

VMA 2a955a4000-2a955c5000

32 pages on node 0

Processed 3196 pages

The MPICH 1.2.6 shared memory implementations.

Here we examine the two MPICH devices that are most likely to be used on a NUMA-system
running Linux; the pure shared memory device, ch shmem, and the combined shared
memory/socket device, ch p4.

MPICH ch_shmem Internals

With the ch_shmem device, all processes communicate through a structure in shared memory
called MPID_shmem. This structure contains an array of packet queues, an array of stacks of free
packets, various locks and packet “pool”, where the data actually resides. There is one packet
queue and one stack of free packets for each process. Packets contain a a "next" pointer that is used
to construct the linked lists that implement the queues and stacks. To alleviate pressure on the
MPID shmem structure, each process has a private structure called MPID Ishmem. This contains
copies of pointers to the elements in MPID shmem.

Initialization

When the application starts, a shared memory region is set up for use by the MPICH's internal
memory allocator. This is accomplished by creating an anonymous, shared memory region with the
mmap() system call.* Memory for MPID_shmem is then allocated and the packet pool is
partitioned. Each packet is pushed onto one of the per-process stacks of available packets. Finally,
the child processes are spawned using the fork() system call.

Sending

Sending is accomplished by first popping a free packet from the process' stack of available
packets. If a packet isn't available, the process blocks. Then the data from the user buffer is copied
into the packet using memcpy(). Finally, the packet is inserted into the incoming packet-queue of
the destination process.

Receiving

When receiving a packet, the data is copied from the packet to the user buffer and the packet is
removed from the incoming-queue. It is then placed in private cache of packets to be returned to
the sender's stack of available packets. The cache is flushed after a certain number of packets has
been put on it.

Problems with ch_shmem

Even though the ch_shmem device keeps separate queues for each process, the location of the
packets in memory is still a performance problem in Linux/NUMA systems. With the default
memory affinity policy of Linux, the first process to write to a page, owns that page for the
duration of execution. In the initialization of ch_shmem, all packets in the pool are touched when
their "next" pointers are set and the packets are partitioned. This causes all the memory pages in
the pool, and therefore all packets, to live permanently on the node on which this setup code was
executed. Consequentially, all processes in the application are forced to access memory on the

3 Early versions of Linux did not support the MAP_ANON flag to mmap().

startup node every time a message is sent or received. This can be a performance limiter, with
respect to both bandwidth and latency. Furthermore, with the default soft processor affinity,
processes may move between nodes but the memory will not, compounding the problem and
giving non-deterministic performance.

Suggested Modifications to ch_shmem

In order to get predictable performance and make sure that processes don't migrate away from their
data, processes needed be locked to nodes so that they display the same hard affinity as memory.
In newer Linux kernels, this can be accomplished with the sched setaffinity() system call. It is
important that the affinity be set as early as possible in the startup process, before any private
memory has been touched. If a process is migrated from one node to another before the processor
affinity is set, all memory it touched while running on the initial node will be in the wrong place.
In order to make sure that the processes are evenly distributed among the available nodes, the
affinity cannot be set until the process has discovered its own rank (MPID myid). Only after that
point, can the processes be scheduled to their own rank modulo the number of processors available.
For the child processes, this can then be done in p2p create procs() (ch_shmem/p2pprocs.c) right
after MPID myid is set from the sequence number MPID shmem->globid. For the initial process,
affinity can be set to node 0 in MPID SH_InitMsgPass() (ch_shmem/shmeminit.c) before the
shared memory segment is initialized. To force a rescheduling of the process, a sched yield() call
should be made directly following the call to sched setaffinity(). Otherwise, the process could
continue to execute on the current (but wrong) node until the current scheduler time-slice runs out.

Any time a message is sent, data is copied from a user buffer on the sender (A) to a packet
in shared memory, and then from shared memory into a user buffer at the receiver (B). When the
packet resides in either A's (or B's) local memory, the latency will be minimal[1] thus we need to
make sure that the shared memory area used by process A's packets gets allocated to the node on
which process A is running. Furthermore, by distributing the packets such that the sender's packets
live on the sender's node, we improve total bandwidth, as more memory interfaces are be utilized
for communication. Given a regular communication pattern, the exchange of data will not stress
one node's memory system more than another.

Most of the code needed to get processes to use packets in local memory is already present
in MPICH. Any given process will always use the same set of packets for sending data and those
sets are partitioned among processes. Since memory gets assigned to nodes at the granularity of
pages, we need to make sure that:

1. The packet pool is page aligned.
2. The packet pool partitions occupy a whole number of pages in memory.

3. The pages used in any pool partitions are first written to by the process that should own
them, after that process has been started on the node where it is supposed to live.

Given 1 and 2, 3 will cause the Linux kernel to place the memory pages used by the
packets in physical memory on the correct node. To accomplish the above, MPID shmem needs to
be allocated with a memory allocator that returns memory that is page-aligned. Also, the
MPID_shmem structure must contain internal padding such that the packet pool begins on a page

boundary. Furthermore, the size of the pool divided by the number of processors must be a whole
multiple of the page size. This allows each partition to contain a whole number of pages worth of
packets in the pool. Finally, each child process must initialize it's own stack of available packets
from the pool. The case where the last packet in a partition spans a page boundary between
partitions can be solved by only initializing the number of packets that fit completely within the
processors partition.

MPICH p4 shmem

With the p4 device, processes communicate via shared memory when on the same machine or via
sockets between systems. Shared memory communication is implemented through a global data
structure called p4 global. p4 global contains:

® One queue of incoming packets for each process.
® A queue of cached available packets, initially empty.
® An array of cached available message buffers, initially empty.

Each process also has a private structure called p4_local which contains a private message queue
for the process.

Initialization

When the application starts, a shared memory segment is set up for the internal memory allocation
interface using the System V IPC interface (shmget/shmat). In Linux this is implemented in the
same way as shared anonymous memory mappings; by mapping a file in a RAM-filesystem using
the mmap() system call. Memory for p4 global is allocated from the segment and some variables
are initialized. Then, an array is set up as a cache of available message buffers with a power-of-
two sizes up to IMB. Memory for p4 local is allocated using malloc() and is mitialized. After this,
the child local processes are spawned by the library using fork(). The child processes free

p4 local, reallocate it with malloc() and reinitialize it.

Sending

On sending via shared memory, a buffer for the message is fetched from the available message
buffer cache in p4 global, or allocated from the shared memory segment if no free buffer of
sufficient size can be found. The data is copied from the user buffer into the message buffer and a
packet is fetched from the global queue of available packets. If the available packet queue is
empty, a new packet is allocated from the shared memory segment. The message is linked into the
packet and the packet is put at the end of the incoming packet queue of the destination process.

Receiving

When receiving a packet, the private queue of received messages is first searched for a matching
message (one with a sender and type that matches those of the MPI receive call that triggered the
receive process). If a match is found, the data is copied into the user buffer and the message is
either cached in the global queue of available message buffers (if the size of the message matches
one of the saved sizes), or it is freed. If no matching message is found, a packet is removed from
the head of the global incoming packet queue for this process if one is available. The message is

retrieved from the packet and placed on the private, unexpected message queue. The packet is then
placed at the head of the queue of available packets.

Problems with p4 shmem

The situation with p4 _shmem is more complicated than with ch_shmem. When a message is being
prepared, it could end up using a packet cached in the global queue of available packets. The
physical memory used for such a packet will reside on the node that originally allocated it, which
may be any node in the system. When no previously allocated packet is available, the process
allocates a new packet from shared memory, but where in physical memory that packet ends up
depends on the page-alignment of the area allocated. If the area is part of a page that has already
been partially used for other packets it could already have been allocated to physical memory on a
remote node. This makes the performance of any given message transaction hard or impossible to
predict. The same problems exist for message buffers: The queue of free messages is shared
among the processors and messages can be allocated on demand. p4 shmem also has the same
problems with soft processor affinity as ch_shmem, processes may move between nodes as the OS
scheduler responds to temporary load imbalances.

Changes to p4_shmem

First and foremost, p4 processes needs to be given hard processor affinity in the same way as with
ch_shmem.

Second, the queue of available packets should be split up so that each process has its own
queue. When a process receives a packet it needs to return the packet to the queue of available
packets belonging to the sending process. In this way any given node will only send packets
allocated on physical memory local to it. For this to work the individual partitions of the queue
needs to be page aligned.

Third, packet allocation must happen either in page-aligned chunks or from a page-aligned
per-process shared memory segment. This is also true of message buffers. A new shared memory
allocator must be implemented for both types of allocations; one that allocates page-aligned, page-
sized blocks of memory, or takes a process ID as an argument and keeps per-process “arenas”. If
the memory allocated keeps per-process arenas, then the free-routine must also keep track of where
to return the memory being freed.

Lastly, the list of available message buffers needs to be split up into page-aligned, per-
processor partitions and the process of returning message buffers after use must be modified to
return the buffers to the sending process' list.

The MPICH2 Shared Memory Implementation

MPICH2 uses the Abstract Device Interface (ADI) version 3 to implement communication. The
current MPICH2 devices all use the CH3 (""channel") implementation design of ADI3. CH3
supports asynchronous, non-blocking communications using MPI requests to keep track of
incomplete operations. MPICH2 has two shared memory chanrels, the shm channel and the
"scalable shm" channel sshm. We look at the sshm channel here.

Process startup in MPICH2 occurs external to the library. Unlike MPICH the MPI library
code never forks, even in the shared memory case. In the MPD, processes are started by forking
the mpd process already running on the host and then calling exec() on the binary to be started.

Communication occurs through a "virtual connection", or vc, a structure describing a point-
to-point connection between two processes. A virtual connection is represented by a vc-structure
private to each process. vc contains, among other things:

A pointer to a shared memory write queue.
A pointer to a shared memory read queue.
A send request queue.

A active send request.

A active receive request.

A current request .

Asynchronous communication is implemented by storing the pointer to the user buffer
submitted in a MPI call in a MPID Request structure that is queued in the virtual connection or in
the MPIDI Process struct (depending on the type and status of the request). A "progress engine"
updates pending requests and sets a completion flag so that completed requests can be returned to
the application. The progress engine can operate synchronously in a single threaded mode or
asynchronously as a separate thread of execution. The current MPICH2 implementation of the ADI
(CH3) does not yet seem to fully support a multi-threaded implementation.

On a Linux system, sshm allocates memory for all shared memory allocation requests
directly using mmap() with the MAP_SHARED flag. No shared memory arena is preallocated for
small allocations. Since mmap() creates a new VMA (which is always page-aligned) in Linux the
area it allocates will be properly page-aligned.

SSHM Initialization

The virtual connections (vcs) for a process are allocated in an array in the MPI process group. The
vcs are not connected until they are actually used. Furthermore, a vc can be connected in one
direction. A process ever only connects a vc for sending. A vc in process A, representing the
connection between processes A and B, is connected for reception when process B connects its
own vc representing the connection for sending. When connecting a vc the write queue for the vc
is allocated from shared memory. The vc read queue is initialized when the process at the other
end connects. It is initialized to point to the shared memory area allocated for the write queue at
the other end of the connection. When vc is a connected virtual connection between process A and
B then the read queue in process A is a pointer to the same shared memory area as the write queue
in process B, and vice versa. The queues contains a fixed array of packets that are used for

communication on the channel. The MPIDI Process struct maintains two lists of virtual
connections, shm_reading_list for vcs that have been connected for reading and shm_writing_list
for ves that have been connected for writing. The same vc can be on both lists at the same time.
Only the vcs on those lists will be checked for pending transmissions by the progress engine.

A "bootstrap queue" is used to transfer the shared memory identifier that is needed to attach to
already allocated shared memory areas (such as when a process attaches the pointer to the read
queue to the memory area allocated to the write queue of another process). The bootstrap queue is
a local linked list of message nodes living in shared memory. The shared area is memory mapped
and thus page-aligned. The linked list itself lives in private memory.

Modifications to SSHM

The only modification that the MPICH2 SSHM device needs is for the mpd to set hard CPU
affinity for the forked child process prior to exec'ing the executable. One way to do this is to start
the executable under the numactl-program to set the CPU affinity to the rank of the process
modulo the number of available CPUs on the system. This is done by modifying the clientPgm and
clientPgmArgs in src/pm/mpd/mpdman.py:mpdman() in the source tree, or by modifying the
installed mpdman.py in an existing MPICH2 installation directory (bin/mpdman.py).

Benchmarks

We implemented the above changes and evaluated the performance of MPI using MPI BENCH,
an MPI Benchmark found in the LLCBench benchmark suite. The execution platform was a 4
processor AMD Opteron system, model 848 processors at 2.2GHz. The system was fully
populated with 16 1GB DDR 400 memory modules. The operating system was Suse Linux 9,
Service Pack 1. Both MPI_Bench and MPICH were compiled using the standard options with gcc

3.3.3.

Mean Bandwidth (KB/sec)

mpi_bench was run with the following options 40 times for each data point. The arithmetic
mean and the standard deviation was then computed. The test was run on 4 processors with the first
processor and the last processor communicating, the inner two were idle.

-d

-11000
-el

-f

-F
-M<size>

bidirectional send/recv mode (mpi_irecv()/mpi_isend()/mpi_waitall()).
1000 iterations per message size

do only 1 run of 1000 iterations

flush cache before start and message sizes

flush cache before starting and between repeat cases

use this message size

Patched MPICH Performance (Mean Bandwidth)

1300000

,,-——l”]”.fifg

1200000

-
&

om

-
/o—o—¢

1100000

/

1000000

900000

800000

700000

& MPICH

600000

m Patched MPICH

500000

400000

300000

200000 *f

100000

&

T
oL 7 &

T 1 1T 1 1T 1T 1T T T T T T T T T T T T T T T/
o 9 % & D S D 7 DBl s M Ty Sy <
0000‘%000000’090‘5’0706‘06‘0)0‘909000@2370

%
Message Size (KB)

Figure 1: Mean Bandwidth of Patched MPICH 1.2.6

Std. Dev. of Mean Bandwidth (KB/sec)

Mean Bandwidth (KB/sec)

60000

Patched MPICH Performance (Std. Dev. Mean Bandwidth)

55000
50000

45000

40000

35000
30000

25000

20000
15000

10000 —
5000 —

7S w2

Lalihi bbb LLLLLLL

2

Y 2 &
0 0 % 0,
k<

1}‘(’)

Q % VN S O S S A S /S R %
(N G I I I A I 2,

Message Size (KB)

[MPICH
[l Patched MPICH

Figure 2: Standard Deviation of Mean Bandwidth of Patched MPICH 1.2.6

1300000

Patched MPICH2 Performance (Mean Bandwidth)

1200000 —
1100000

=
) N .775*375 5 5 T
o < OO <O
[
|

1000000
900000

800000

700000

600000

500000
400000

300000
.

200000

100000

0

T T T T T T T T T TT
S B K 6 H & & I 7, T o g e e T8
o 0 VD D 0 D D R % R G R

Q
N |
&

Message Size (KB)

¢ MPICH2
® Patched MPICH2

Figure 3: Mean Bandwidth of Patched MPICH?2

Patched MPICH2 Performance (Std. Dev. Mean Bandwidth)

75000
70000 —
65000 —
60000 —
55000 —
50000 —
45000 i —

40000 I — c
35000 | - o | | O MPICH2

. l mm i Il Patched MPICH2
30000 T L B Bin

25000 e H = —
20000 e H = —
15000 — e H = —
10000 —

5000 | t ==:
0 ULnlnin, e

Std. Dev. of Mean Bandwidth (KB/sec)

Message Size (KB)
Figure 4: Standard Deviation of Mean Bandwidth of Patched MPICH?2

Discussion

We see that in both Fig. 1 and Fig. 3, that the average bandwidth has improved a 2-10% percent in
most cases. This is to be expected since the cost of interprocessor communication is current
dominated by the cost of the two copy implementation (one to the shared memory, one to receiver).
The effects are more pronounced in the MPICH1 implementation because the packets now almost
always live in the “right” place, on the sender's node. Because of the 4 processor run, usually we
are communicating between nodes that are farthest apart in the HyperTransporttopology. As
HyperTransport only exhibits a small percent decrease in bandwidth with each additional hop, we
are able to “make up” this difference by proper memory placement of the packets and data
structures in the shared memory region. The humps at the beginning part of each curve are from
the cache effects on repeated use of the same message buffers in the benchmark. The big benefit of
these modifications becomes apparent when one observes the differences from run to run of the
same benchmark. The patched versions show a tremendous decrease in variation from run to run,
even for messages that live entirely in cache. The variation stems both from the original choice of
process to node mapping and from subsequent rescheduling. The patch guarantee's the same
placement of processes for every run, delivering highly predictable performance.

It should be noted here that no runs were done of actual application code. However, we
believe that the effects of this work will have an even greater impact on application performance.
This is due to the soft processor affinity of Linux processes. Once the user has issued an MPI_Init
(), his process will be on the same node for the duration of the run. Depending on the initial
process placement and the type/frequency of memory accesses, it's possible to see a significant
increase in the performance of application code. A test user of the patched MPICH 1.2.6 reported
that a 4 processor run of EGDE, a computational electromagnetics code that performs sparse
matrix-vector arithmetic, ran 30% faster.

Future Work

AMD is currently implementing our suggested changes to the MPICH1 ch p4 device. The most
difficult modifications to perform are the per-page and per-process allocation of the shared
memory region. My using a custom memory allocator and proper padding of the global structure,
virtually all remote references due to MPI references can be eliminated.

It should be noted that while we have drastically reduced the variation in run-time and
increased average performance in most cases, there still is a lot to be gained by eliminating the
copies done by both these MPI implementations. It should be noted that for unidirectional
transfers, it's faster to send a message to yourself over an Infiniband/PCI-X adapter than it is over
shared memory due to Infiniband's zero copy infrastructure.

Linux provides a mechanism to do single process to process memory copies via the
/proc/<PID>/mem device. MPICH2 appears to have remnants of code that attempted to use this at
one time, but it is commented out in the 1.0.1 release. A single copy could easily be built using the
current infrastructure that uses the shared memory segments to exchange pointers and offsets. The
actual data transfer could be done using the above device. Furthermore, the current implementation
uses System V semaphores (a system-call) to guard against concurrent accesses to shared data
structures. Semaphores are known to be highly inefficient and numerous high performance, user-
level equivalents exist. Even better, the implementations could be made lock-free by using atomic
compare-and-swap instructions available on most platforms.

For a true high performance implementation, a kernel level zero-copy mechanism should
be designed. This would allow true zero copy between cooperating processes by intelligent use of
the TLB, page-tables and the Copy-On-Write mechanism. There have been other experiments in
this area, most notably the zero-copy pipe() patch that was circulated on the Linux Kernel mailing
list. Also, correspondence with the developers of MPICH-VMA from NCSA, indicated that they
had also experimented with a kernel module to do true zero copy. With the advent of high
performance zero-copy network stacks, the time has come to provide this capability for
interprocessor communication.

End Notes

1. This argument applies to data movement through the processor, this appears to be the way
memcpy() does things on linux.

Let us denote the time taken to move a data object from memory into the processor over the
memory bus locally on a node 7, and the time taken to transfer the object over the node-
interconnect from node A to node B 7'_4,B. We assume that the local memory transfer time is
equal on all nodes and furthermore that writing the same object from the processor to memory is
the same as for reading it.

In the case where all packets live on node 0, the transfer time for a message between nodes X and
Y, when X and Y are not equal to zero is:

T+T X0+ T+T+T 0Y+T=4T+T X0+T 0Y

If the packets live on node X the time becomes:

T+T+T+T X Y+T=4T+ T XY

Assuming that 7 XY is always shorter or equal to (7 _X,0 + T_0,Y), which is a reasonable
assumption since the path from X to Y could pass node 0, the latency in the case where the packets

live on one of the involved nodes will be smaller or at worst equal to the case where all packets
live on the same node.

References/Links

Kernel Patches, MPICH Patches and the most recent version of this document.
http://www.pde.kth.se/~pek/linux

Undocumented Virtual Address to Node Mapping in Andi Kleen's libnuma.
http://article.gmane.org/gmane.linux.1se/3366

Understanding the Linux Virtual Memory Manager by Mel Gorman
http://www.skynet.ie/~mel/projects/vin/

Linux Device Drivers, 2nd Edition by Alessandro Rubini and Jonathan Corbet
http://www.xml.com/ldd/chapter/book/index.html

MPICH2 Design Document, Draft of October 14, 2002 by David Ashton,
William Gropp, Ewing Lusk, Rob Ross, Brian Toonen
http://www-unix.mcs.anl.gov/mpi/mpich2/docs/mpich2.pdf

A High-Performance, Portable Implementation of the MPI Message Passing
Interface Standard, by William Gropp, Ewing Lusk, Anthony Skjellum

http://www-unix.mcs.anl.gov/mpi/mpich/papers/mpicharticle/paper.html

MPICH Abstract Device Interface Version 3.4 Reference Manual by
William Gropp, Ewing Lusk, David Ashton, Rob Ross, Rajeev Thakur,
Brian Toonen

http://www-unix.mcs.anl.gov/mpi/mpich2/docs/adi3man.pdf

MPICH Home Page
http://www.mcs.anl.gov/mpi/mpich

MPICH2 Home Page
http://www.mcs.anl. gov/mpi/mpich2

Zero Copy Pipes
http://Ise.sourceforge.net/pipe/pipe-results-large-zero

Efficient MPI on SMP Cluster
http://ipdps.eece.unm.edu/1999/pc-now/takahash.pdf

MPIBench and LLCBench
http://icl.cs.utk.edu/llcbench

