Notes on LINPACK NxN Benchmark on Hewlett-Packard Systems

Piotr Luszczek*

August 3, 2001

Benchmark Matrix | Optimizations Parallel
name dimension allowed Processing
100 100 complier No
1000* 1000 manual No
Parallel 1000 manual Yes
NxN** arbitrary manual Yes

* also known as TPP (Towards Peak Performance) or

Best Effort
** also known as Highly-Parallel LINPACK Benchmark

Table 1: The LINPACK Benchmark details.

1 LINPACK Benchmark Overview

As a yardstick of performance the "best” performance is used as
measured by the LINPACK Benchmark [1, 2]. It is set of bench-
marks that indicate speed at which a given computer solves a
system of linear equations. Details of the types of the LIN-
PACK benchmark suite are given in table 1.

The TOP500 list contains computers ranked by their perfor-
mance on the LINPACK NxN Benchmark. The list has been
compiled twice a year since June 1993 and is published in June
at the International Supercomputer Conference in Europe and
in November at the SC conference in the U.S.A. Systems hav-
ing the same performance rate are sorted according to their
manufacturer’s name.

Here is the original description of the NxN benchmark [2]:
”[...] The ground rules are as follows: Solve systems of linear
equations by some method, allow the size of the problem to
vary, and measure the execution time for each size problem. In
computing the floating-point execution rate, use 2n3/3 + 2n?
operations independent of the actual method used. (If you
choose to do Gaussian Elimination, partial pivoting must be
used.) Compute and report a residual for the accuracy of solu-
tion as [[Az — bl /(|| Al[|z]])-

The columns in Table 3 are defined as follows:

Rynax the performance in Gflop/s for the largest problem run
on a machine.

Ninae the size of the largest problem run on a machine.

Ny /2 the size where half the R,,q, execution rate is achieved.
Rpeqr the theoretical peak performance Gflop/s for the ma-
chine. [...]”

*Mathematical Software Group (http://texas.rsn.hp.com/), Richard-
son, TX 75080, E-mail: luszczek@rsn.hp.com

2 The HPL Code

HPL [9] is a software package that generates and solves a ran-
dom dense linear system in double precision (64 bits) arithmetic
on distributed-memory computers. It is perfectly suitable as a
code to run the Highly-Parallel LINPACK Benchmark. It is
portable through the use of Basic Linear Algebra Subprograms
(BLAS) [3, 4] and the Message Passing Interface (MPI) [5, 6, 7]
and its source code is available free of charge. The only assump-
tion made in the code is that all CPUs in the system have the
same processing power and the implementation of MPI’s grid
topology routines efficiently balances the communication load
over the interconnect.

Here are some general remarks of the authors about HPL [9]:
“[...] HPL solves a linear system of order n of the form:

Az =D

by first computing the LU factorization with row partial pivot-
ing of the n-by-(n + 1) coefficient matrix:

[Avb} = [[L, U]ay]

Since the lower triangular factor L is applied to b as the fac-
torization progresses, the solution x is obtained by solving the
upper triangular system:

Uz =y.

The lower triangular matrix L is left unpivoted and the array
of pivots is not returned. [...]”

This immediately implies that this is not a general LU fac-
torization software and it cannot be used to solve for multiple
right hand sides simultaneously.

HPL performs two-dimensional blocking [9] illustrated in the

Fig. 1:
“[...] The data is distributed onto a two-dimensional P-by-Q
grid of processes according to the block-cyclic scheme to ensure
“good” load balance as well as the scalability of the algorithm.
The n-by-(n + 1) coefficient matrix is first logically partitioned
into nb-by-nb blocks, that are cyclically “dealt” onto the P-by-
Q process grid. This is done in both dimensions of the matrix.
[...]”

The type of panel broadcast algorithm can be chosen in HPL
out of the following:

e Increasing ring
e Modified increasing ring

e Increasing 2-ring

Global view:

Ay | Bio | Ci3 | Ay | Bis | Cus
D21 | Egg | Faz | Doy | Eos | Fag
A3y | B3o | C33 | Azq | B3s | Css
Dy1 | Es2 | Fu3 | Dag | Ess | Fys
Distributed view:

Ay | Ay | Big | Bis | Cig | Cus
A3y | Azg | B3z | Bgs | C33 | Csg
D21 | Doy | Ega | Eaos | Faz | Fag
Dy1 | Dag | Eg2 | Egs | Fuz | Fys

Figure 1: Block-cyclic distribution scheme for 6 CPUs named
A, ..., F of a matrix consisting of 4 by 6 blocks.

e Modified increasing 2-ring
e Long (bandwidth reducing)

It also allows to vary the look-ahead depth, communication
pattern for updates U, and recursive algorithm for panel fac-
torization. The backward substitution is done with look-ahead
of depth 1.

In order to run, HPL requires implementation of the BLAS
and Message Passing Interface standards.

The timing procedure of the solve phase is illustrated by the
following pseudo C code from Fig. 2

/* Generate and partition matrix data among MPI
computing nodes. */

/x ... x/

/* All the nodes start at the same time. */
MPI_Barrier(...);

/* Start wall-clock timer. */
dgesv(...); /* Solve system of equations. */
/* Stop wall-clock timer. */

/* Obtain the maximum wall-clock time. */
MPI_Reduce(...);

/* Gather statistics about performance rate
(base on the maximum wall-clock time) and
accuracy of the solution. */

/*x ... %/

Figure 2: Timing of the LINPACK Benchmark distributed
memory code in HPL.

Tuning of HPL is thoroughly described by the authors. The
most influential parameters are: the blocking factor N B, ma-
trix dimension IV, process grid shape and communication algo-
rithms.

HPL is most suitable for cluster systems, i.e. relatively many
low-performance CPUs connected with a relatively low-speed
network. It is not suitable for SMPs as MPI incurs overhead

which might be acceptable for a regular application but causes
substantial deterioration of results for a benchmark code. An-
other performance consideration is the use of look-ahead tech-
nique. In an MPI setting it requires additional memory to be
allocated on each CPU for communication buffer of the look-
ahead pipe. In an SMP environment, existence of such buffers is
rendered unnecessary by the shared memory mechanism. The
buffer memory can grow extensively for large number of CPUs
and in SMP system it should rather be used to store matrix
data as the performance of the benchmark is closely related to
the size of the matrix.

3 Former Benchmark Code for SMP
Systems

The old SMP code for LINPACK NxN Benchmark on Hewlett-
Packard systems was derived from the freely available LA-
PACK’s implementation of LU factorization [10]. It is a panel-
based factorization code with look-ahead of depth 1. It uses
advanced optimization techniques [12] and with its blocking
factors fine-tuned for the architectures available at the time
when the code was created. The code is written in Fortran 90
and the most computationally intensive parts (such as Schur’s
complement operation) are written in assembly. Threading is
performed with the CPS system which performs thread-caching
for faster spawning of threads. The code is able to achieve very
good benchmark results but unfortunately it is limited as to
the dimension of matrices it can factor. The limitation comes
from the fact that Fortran 90 runtime system allows the size of
arrays that can be dynamically allocated to be no larger than
16 GBytes when 4-byte integers are used. Thus, the biggest
double-precision matrix that can be allocated has dimension
46340, even in a 64-bit addressing mode. For bigger matrices a
4-byte integer overflows. This problem may be easily circum-
vented with the use of 8-byte integers and a change to 64-bit
integer arithmetic may be achieved with a single compilation
flag. However, such integers would require use of 64-bit version
of MLIB [13] and might not work with calls to other libraries.
Still, if conformance with all external routines is achieved, the
code would use twice as much memory bandwidth to operate
on 8-byte integers which is unacceptable for a benchmark code.

4 Current SMP Implementation

The new SMP code for the LINPACK NxN Benchmark imple-
ments the same functionality as HPL, i.e. it is not a general
LU factorization code, however, it uses one-dimensional data
distribution between CPUs. The matrix is partitioned into
equal size vertical panels, each of which is owned by a cer-
tain CPU. The ownership is determined in a cyclic fashion as
illustrated in Fig. 3. In general, panel i is owned by CPU k
where: k =14 (mod Neopys)-

Ownership of a panel implies that a given CPU is responsible
for updating and factorizing the panel. This scheme prevents
multiple CPUs to update or factor the same panel. Once the
data is logically assigned to the CPUs, factorization may pro-
ceed. A sample computational sequence for LU factorization

Po | Py | Py | Py | P | P2

Figure 3: Cyclic 1D division of a matrix into 6 panels. Each
panel is owned by one of 3 processors: Pgy, Py, Ps.

is shown in Fig. 4. The important observation is that updates
can be performed independently, whereas factorization steps
have to be scheduled in a strictly defined order. It is said that
factorization steps lie on a critical path of the algorithm. The
consequence of the existence of a critical path is the need to
perform factorization steps ahead of time so that CPUs that
do not own a given panel do not have to wait for this panel to
be factored. This is usually done with a look-ahead technique:
during an update stage of computation each CPU checks if it
is possible to factor one of its panels ahead of time. Fig. 5
shows a general algorithm that performs a look-ahead during
factorization.

Factor panel 0

Update panels 1, 2 using panel 0
Factor panel 1

Update panel 2 using panel 1
Factor panel 2

Figure 4: Computational sequence for factorization of a matrix
divided into 3 panels.

The new SMP code for LINPACK benchmark implements
three variants of the algorithm from Fig. 5:

e look-ahead of depth 2,
e critical-path, and
e dynamically bounded critical-path.

The variant with look-ahead of depth 2 allows each thread
to factor only up to two panels ahead of the current panel.
The advantage is that only two threads are accessing thread-
shared data. These are the two threads that own panels to
be factored through the in look-ahead pipe. The remaining
threads perform updates on their own panels. This minimizes
contention for shared data. On the other hand, some panels
might not be factored soon enough. This, in turn, would cause
some CPUs to wait. Details of this variant are shown in Fig. 6.

In the critical path variant, every thread constantly checks for
possibility to factor yet another panel. These constant checks
may cause excessive contention for shared data but any panel
(except for the first one) is always ready (i.e. it is factored)
when it’s needed. Details of this variant are shown in Fig. 7.

To aliavate the contention of the critical path variant, the dy-
namically bounded critical path variant has been introduced.

for each panel p
begin
Panel factoriazation phase
if panel p belongs to this thread
begin
Factor panel p.
Mark panel p as factored.
Notify threads waiting for panel p.
end
else
if panel p hasn’t been factored yet
Wait for the owner of panel p to factor it.

Update phase
for each panel u such that:

u > p and panel u belongs to this thread
begin

Update panel u using panel p.

Look-ahead technique

if panel u — 1 has been factored

begin
Perform necessary updates to panel u.
Factor panel .
Mark panel u as factored.
Notify threads waiting for panel .

end

end
end

Figure 5: General thread-based panel factorization algorithm
with a look-ahead technique. This code is executed by each
thread (according to SIMD paradigm).

Still, every thread performs checks whether it’s possible to fac-
tor yet another panel. However, the checks stop as soon as at
least one panel gets factored during a single update phase. The
checks resume at the next update phase (i.e. for the updates
from the next global panel). To some extend then, this variant
tries to minimizes contention for shared data and, at the same
time, allows for look-ahead panels to be factored promptly. The
algorithm can easily be derived from what is shown in Fig. 7.
The change that needs to be made is adding a check whether at
least one panel has been factored during a factorization phase.
If so, only update operations are performed.

The new code is written in C and uses fine-tuned BLAS
computational kernels of the old code. They are necessary
ingredients of the code since most of the factorization time
is spent in them. The panel factorization uses the recursive
right-looking LU decomposition algorithm with partial pivoting
[11] presented in Fig. 8. Threading is performed with POSIX
thread API (pthread) [14] with simple thread-caching mecha-
nism added to shorten thread’s start-up time. As synchroniza-
tion mechanism, pthread’s mutexes and condition variables are
used. The important remark to make at this point is that
threaded applications that use MLIB a single thread stack size
should be at least 4 MBytes. Explicit shared data is minized

and is limited to a global integer array (referred in the code as
panel_ready) of size equal to the number of panels. Initially set
to 0, its entries are set to 1 if the corresponding panel has been
factored. Accesses to this array are minimized as it might cause
excessive contention among threads as well as cache-thrashing
when neighboring entries of the array are accessed.

To deal with the aforementioned problem with allocating and
indexing of large arrays the code uses 64-bit addressing model.
It allows the Standard C Library’s malloc() function to use
memory storage on the heap which is as big as the physical
memory constraints permit. However, for such large matrices
64-bit indexing has to be used. Thus, whenever an integer
arithmetic operation might overflow a 32-bit integer, variables
of type size_t (from the standard header file stddef.h) are
used or appropriate casts are performed.

5 The Code for Constellation Sys-
tems

The new MPI LINPACK NxN Benchmark code performs the
same operation as its SMP counterpart but is meant for
Hewlett-Packard’s constellation systems. A constellation sys-
tem consists of a small number of high performance SMP nodes.
It’s been designed to take full advantage of the computational
power of a single SMP node (as exhibited by the aforemen-
tioned SMP code) and to minimize performance loss incurred
by the interconnect between the nodes.

Experimental data proved the look-ahead mechanism very
successful in achieving high performance in constellation set-
ting. Two variants of the algorithm are implemented: with
look-ahead depth of 1 and 2; the latter achieving somewhat
better performance. The lack of load balancing solution was
determined by the types of systems that would be eligible for
LINPACK Benchmark. These systems are mostly SMP nodes
with differing number of CPUs. The CPU types, however,
are the same across multiple nodes (this is also an assump-
tion made in HPL). This substantially simplified the design of
the algorithm. Each computational node runs the same num-
ber of threads. However, by assigning multiple computational
nodes to a single SMP node, it is possible to balance the load in
the system. For example, in a setting with two SMP nodes one
with 64 CPUs and the other with 32 CPUs, the preferred con-
figuration is to have two computational nodes on the 64-CPU
machine and one node on the 32-CPU machine. Each node
should run 32 threads so there is one-to-one mapping between
threads and CPUs in the system.

Communication between nodes is performed by a separate
thread using MPI. Standard MPI collective communication
routine, namely the MPI Bcast () routine, is used to communi-
cate matrix data between nodes.

6 Tuning the Benchmark Codes

The performance obtained on a given system for the LINPACK
NxN Benchmark heavily depends on tuning the code and sys-
tem parameters. The code tries to choose appropriate values of
blocking parameters which initially were obtained experimen-

tally and now are used as default values. In real applications,
the user is not able to choose them, though. However, they are
chosen for the user by system libraries such as MLIB to obtain
close to optimal performance. In the new benchmark code, it is
still possible to change blocking parameters to (possibly) obtain
a better performance a new system.

For the benchmark run it is beneficial for the matrix dimen-
sion to be a multiple of the panel width. This prevents running
clean-up code which has lower performance than the code for
matrix with appropriate dimension. Also, matrix dimension
has to be large enough for the code to fully take advantage of
techniques to hide memory and network latencies. These tech-
niques are look-ahead and communication/computation over-
lapping. The effectiveness of these techniques deteriorates at
the end of factorization as the parallelism inherent in the pro-
cess decreases and there is less possibility to take advantage of
them. Large matrices, however, require for the system to have
enough main memory not to trigger the paging mechanism to
slow the factorization.

For SMP codes (including the benchmark code) it is impor-
tant to pay close attention to data shared by multiple threads.
Correctness requires synchronization protocols to be employed
to avoid multiple or incomplete accesses to these data. Effi-
ciency, on the other hand, requires the accesses to be mini-
mized. This can be done with algorithmic changes in the code
as well as proper data layout which avoids cache-thrashing for
logically independent data elements which happen to be phys-
ically neighboring each other in main memory.

Important consideration for memory-intensive codes is the
proper handling of memory by CPU. This may be chosen at
compilation or linking time. At compilation time, it has to be
decided whether 32 or 64-bit addressing model should be cho-
sen. While it seems obvious to always choose 64-bit mode as the
64-bit integer arithmetic is as fast as its 32-bit counterpart and
it allows larger memory for a program, it might have negative
influence on the performance for applications which store many
pointers in memory (rather than address registers). A 64-bit
pointer requires twice as much bandwidth to be fetched. In
the benchmark code we have chosen the 64-bit model because
it gives access to memory areas bigger than 4 GBytes. An-
other issue worth considering is the data page size. chatr (1)
utility allows setting an appropriate page size for an existing
executables. It is desirable for a portion of a matrix owned by
a single CPU to be retained at all times in this CPU’s Transla-
tion Look-aside Buffer (TLB) which on Hewlett-Packard’s PA-
RISC processors has usually 128 entries. Thus, for a matrix of
dimension 108000, there is a total of some 89 GBytes of mem-
ory required to store it which translates to about 1.4 GBytes
per each CPU. If one wants each CPU to retain such an amount
of data in its TLB the data page size has to be set with the
chatr (1) command to 16 MBytes.

In addition, there are also kernel tunables which can affect
the performance, especially for memory-intensive applications.
Two important kernel parameters: data_size and stack_size
may limit the amount of memory that process has if they are
not set properly. Also, the amount of swap space has to be
at least as big as the available physical memory since other-
wise the memory will be scaled down to the size of the swap
space. Kernel’s buffer cache can sometimes occupy excessive

amount of the main memory. For the benchmark code it was
sufficient to have less than 3% of main memory to be assigned
to buffer cache. This of course does not hold for applications
with intensive file I/O use.

The important feature of a LINPACK benchmark code is a
short completion time for a single run. This allows more tests
to be performed in order to find optimal execution parameters.
This is extremely important since usually machines, on which
benchmarking is performed, allow only a short period of time
of a dedicated access due to their heavy use. To facilitate it,
the parts of the codes that are not timed (matrix generation,
computation of norms and residual) are also optimized and are
run in parallel where possible. The matrix generation part
is particularly sensitive to optimizations in a multi-threaded
MPI environment. It has to deliver large non-singular matri-
ces. To meet all these goals, the original random number gen-
erator from the LINPACK benchmark code was modified so
that each thread generates a globally unique random sequence
of period 24°. Computing the || Az — b|| residual has to be done
in a fashion which does not cause a catastrophic cancellation
effect. This is especially viable in an MPI environment where
the partial sums might be truncated while being transferred
between higher precision floating point registers and memory
when they get sent across the network.

7 Performance Results

In the tables throughout this section the standard LINPACK
benchmark parameters are used as described in section 1. In
addition, symbol F' denotes the fraction of the theoretical peak
of a machine that has been obtained by the benchmark code.
Tests that used message passing were using HP MPI verion 1.7.

Tables 2 and 3 compare performance of two benchmark codes
on Hewlett-Packard’s SMP systems with two different processor
architectures. Quite substantial improvement of performance
for the new code can be attributed to ability to run much bigger
matrices. This shows how important is large memory available
for the benchmark run. However, the new code is still able to
outperform the old one for the same matrix sizes: for the matrix
of order 41000 it is able to deliver 121 Gflop/s as compared with
117 Gflop/s for the old code. This 4 Gflop/s difference may (to
some extent) be atributed to the following:

e the old code does only look-ahead of depth 1 which might
occasionally make some CPUs wait for a panel to get fac-
tored; the new code has multiple look-ahead strategies,

e the old code performs backward pivoting which is not nec-
essary for a single right hand side,

e the old code performs two calls to DTRSM() function during
solve phase as opposed to just one call in the new code,

e the old code’s panel factorization is a blocked DGEMM()-
based variant versus recursive one in the new code.

The other interesting aspect is the fact that the performance
of the LINPACK 1000 Benchmark for a single CPU of Super-
Dome is 1.583 Gflop/s whereas for a 64-CPU LINPACK NxN
benchmark it is 1.562 Gflop/s per CPU which translates into
over 98% parallel efficiency.

No. Old algorithm New algorithm Rpycak
of Nma:r Rmaz F Nmaz Rma:c F
proc. | [10%] [Gflop] [%] | [10%] [Gflop] [%] | [Gflop]
32 41 50.3 71 40 50.6 72 70.7
64 41 90.9 64 108 100.0 71 141.3

Table 2: Performance of SuperDome PA-8600 552MHz SMP
system for LINPACK NxN Benchmark.

No. Old algorithm New algorithm Rpeak
of Nmaac Rmam F Nmam Rmaf F
proc. | [103] [Gflop] [%] | [10%] [Gflop] [%)] | [Gfiop]
32 41 654 68 75 67.3 70 96
64 41 117.0 61 120 133.2 69 192

Table 3: Performance of Caribe PA-8700 750MHz SMP system
for LINPACK NxN Benchmark.

Tables 4 and 5 show performance results for the MPI code
that runs the LINPACK NxN Benchmark for two kinds of inter-
connect. Table 4 shows the performance for the unsymmetric
Caribe system where one of SMP nodes has 32 CPUs and the
other has only 16. In such a setting, the code was run with
two MPI nodes on the 32-CPU system and one MPI node on
the 16-CPU machine. Table 5 compares the performance of
two symmetric Caribe systems with two different MPI node
assignments.

Table 6 presents comparisons of comunication parameters of
the interconnects and protocols used in tests. HyperFabric is a
high speed cluster interconnect product that enables hosts to
communicate between each other at link speeds of 160MB/s in
each direction. With longer cable lengths (greater than 35ft),
the speed is limited to 80MB/s. HyperFabric technology con-
sists of hi-speed interface cards and fast switches which use
worm-hole routing technology for hi-speed switching. The la-
tency of the core switching chip is 100ns. Lowfat is a specialized
low-latency /high bandwidth optimized protocol implemented
on top of the HyperFabric interconnect. Table 7 shows per-
formance of an N-class system with different interconnects and
protocols. A rather poor scalability of Lowfat protocol for four
nodes should be attributed to much smaller matrices that has
been factored on this system. The size could not be increased
due to memory being occupied by the Lowfat protocol buffers.

Interconnect | Npaz Roos F

[10°] [Gflop] [%]
Ethernet 100 90 90.9 63
Gigabit 92 97.9 68

System characteristics:

32-CPU Caribe + 16-CPU Caribe
Rpear. = 144 Gflop

3 MPI nodes x 16 CPUs = 48 CPUs

Table 4: Performance of two unsymmetric Caribe PA-8700
750MHz SMP systems for LINPACK NxN Benchmark.

2 x 32 CPUs | 4 x 16 CPUs
Interconnect | Npqz Roas F Roax F
[10%] | [Gflop] (%] | [Gflop] (%]
Ethernet 100 90 108.8 57 106.4 55
Gigabit 92 126.4 66 126.8 66
System characteristics: 2x32-CPU Caribe
Rpear = 192 Gflop

Table 5: Performance of two symmetric Caribe PA-8700
750MHz SMP systems for LINPACK NxN Benchmark.

Interconnect Bandwidth | Latency
(protocol) [Mb/s] [us]
Gigabit Ethernet 35-50 | 100-200
HyperFabric 79 57
Lowfat 100 33

Table 6: MPI performance over HyperFabric and Gigabit Eth-
ernet interconnects and Lowfat protocol.

2x8CPUs | 3x8CPUs | 4x8CPUs
Interconnect Roas F Roax F Roax F
(protocol) [Gflop] [%] | [Gflop] [%] | [GHop] [%]
Ethernet 100 15.0 53 19.3 46 216 38
HyperFabric 15.7 56 23.2 55 29.7 53
Lowfat 16.5 58 23.5 56 28.4 50
Rpear|Gllop] 282 122 56.3
System characteristics: {2, 3,4}x8-CPU N-class

Table 7: Performance of up to four N-class PA-8500 440MHz
SMP systems for LINPACK NxN Benchmark.

References

[1] J. Dongarra, J. Bunch, C. Moler and G. W. Stewart, LIN-
PACK Users Guide, STAM, Philadelphia, PA, 1979.

[2] J. Dongarra, Performance of Various Computers Using
Standard Linear Equations Software, Technical Report CS-
89-85, University of Tennessee, 1989. (An updated version
of this report can be found at http://www.netlib.org/
benchmark/performance.ps)

[3] J. Dongarra, J. Du Croz, S. Hammarling, and R. Han-
son, An extended set of FORTRAN Basic Linear Algebra
Subprograms, ACM Transactions on Mathematical Soft-
ware 14, pp. 1-17, March 1988.

[4] J. Dongarra, J. Du Croz, I. Duff, and S. Hammarling, A set
of Level 3 FORTRAN Basic Linear Algebra Subprograms,
ACM Transactions on Mathematical Software 16, pp. 1-17,
March 1990.

[6] Message Passing Interface Forum. MPI: A Message-Passing
Interface Standard. The International Journal of Supercom-
puter Applications and High Performance Computing, 8,
1994.

[6] Message Passing Interface Forum. MPI: A Message-Passing
Interface Standard (version 1.1), 1995. http://wuw.mpi-
forum.org/.

[7] Message Passing Interface Forum. MPI-2: Extensions to the
Message-Passing Interface, July 1997. http://www.mpi-
forum.org/.

[8] LINPACK Benchmark on-line FAQ: http://www.netlib.
org/utk/people/JackDongarra/faq-linpack.html.

[9] A. Petitet, R. C. Whaley, J. Dongarra, A. Cleary, HPL - A
Portable Implementation of the High-Performance Linpack
Benchmark for Distributed-Memory Computers, http:/
/www.netlib.org/benchmark/hpl/ (or http://icl.cs.
utk.edu/hpl/).

[10] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen, LAPACK User’s Guide, So-
ciety for Industrial and Applied Mathematics, Philadelphia,
PA, Third edition, 1999.

[11] F. Gustavson, Recursion leads to automatic variable block-
ing for dense linear-algebra algorithms, IBM Journal of
Research and Development 41(6), pp. 737-755, November
1997.

[12] K. R. Wadleigh and I. L. Crawford, Software Optimiza-
tion for High-Performance Computing, Prentice-Hall, Inc.,
Upper Saddle River, New Jersey, 2000.

[13] HP MLIB User’s Guide, VECLIB and LAPACK, First
Edition, Hewlett-Packard Company, December, 1999.

[14] International Organization for Standardization. Informa-
tion technology — Portable operating system interface

(POSIX) — Part 1: System Application Programming In-
terface (API) [C language]. ISO/TEC 9945-1:1996, Geneva,

Switzerland, 1996.

for each panel p
begin
Panel factoriazation phase
if panel p belongs to this thread
begin
Factor panel p.
Mark panel p as factored.
Notify threads waiting for panel p.
end

else
if panel p hasn’t been factored yet

Wait for the owner of panel p to factor it.

Look-ahead of depth 1
if panel p + 1 belongs to this thread
begin
Update panel p + 1 from panel p.
Factor panel p + 1.
Mark panel p + 1 as factored.
Notify threads waiting for panel p + 1.

end

Update phase
for each panel u such that:

u > p and panel u belongs to this thread
begin

Update panel v using panel p.

Look-ahead of depth 2
if panel p + 2 belongs to this thread and

it hasn’t been factored and
panel p + 1 has been factored

begin
Perform necessary updates to panel p + 2.
Factor panel p + 2.
Mark panel p + 2 as factored.
Notify threads waiting for panel p + 2.

end

end
end

Figure 6: Thread-based panel factorization algorithm with a
look-ahead of depth 2.

Let f be the first panel that belongs to this thread
(not counting the first panel)
for each panel p
begin
Panel factoriazation phase
if panel p belongs to this thread
begin
Factor panel p.

function dgetrf(4 € R™*"™;m > n)

returns: (R"™*" 3)A’ = (L — I) + U; where:

L - lower triangular (trapezoidal) matrix with unitary diagonal
U - upper triangular matrix

Mark panel p as factored. p-A=L-U . .
. . P - (row) permutation matrix
Notify threads waiting for panel p. begin
end . mx1 .
olse if (A € R™*!) begin

if panel p hasn’t been factored yet {find largest element w.r.t absolute value}
k = idamax(ay := maxz(A.1));

Wait for the owner of panel p to factor it. a0 = ap; {swap elements.}’

{scale column by pivot’s reciprocal}
dscal(AQ:m,l = é : AQ:m,l);
else begin

Update phase
for each panel u such that:
u > p and panel u belongs to this thread

begin dgetrf({ iu]>,
Update panel u using panel p. L2l . .
{apply pivoting sequence to trailing matriz}

Look-ahead technique dlaswp ({ Arz]) :

if panel f — 1 has been factored Az 44
dtrsm(A := Liy - A12);

begin
Perform necessary updates to panel f. dgemm(Agy := Ay — Agy - Ava); {Schur’s complement}
Factor panel f. dgetr f(/‘122)‘§
Mark panel f as factored. {apply pivoting sequence}
Notify threads waiting for panel f. d dlasup(Az1);
en

f = f+number_of_threads _
end end function dgetrf
end

end Figure 8: Recursive LU factorization routine for double preci-

sion matrices.

Figure 7: Critical path variant of thread-based panel factoriza-
tion algorithm.

