

Digital Transformation of Droplet/Aerosol Infection Risk Assessment Realized on "Fugaku" for the Fight against COVID-19

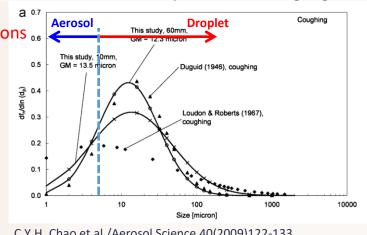
Kazuto Ando*1, Rahul Bale*1, ChungGang Li*1,2, Satoshi Matsuoka*1,3, Keiji Onishi*1 and Makoto Tsubokura*1,2

¹RIKEN Center for Computational Science

²Kobe University

³Tokyo Institute of Technology

*All authors are listed in alphabetical order by surnames


COVID-19 and Droplet/Aerosol Infection

 Several ways of transmission... Caused by airway secretions ...

Contact Norovirus...

Blood-borne Hepatitis...

Airborne Tuberculosis, Measles... Far distance Droplet Influenza, Rubella... Close distance: 2m or less And more... Distribution of droplet size when coughing

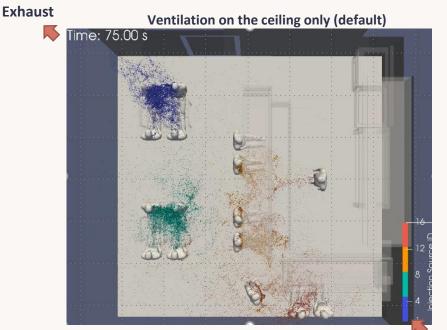
C.Y.H. Chao et al./Aerosol Science 40(2009)122-133

- Difficulty in the COVID-19 transmission.
 - Emerging infection disease rapidly spread all over the world.
 - Inhalation of dense aerosol emitted from an infected person at relatively close distance, intermediate bet. Airborne/droplet.

Utilizing massively parallel resources for tons of virtual infection risk assessments and proposal of each countermeasure!

No scientific data under strict lockdown.

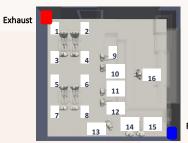
Risk strongly affected by indoor air condition.

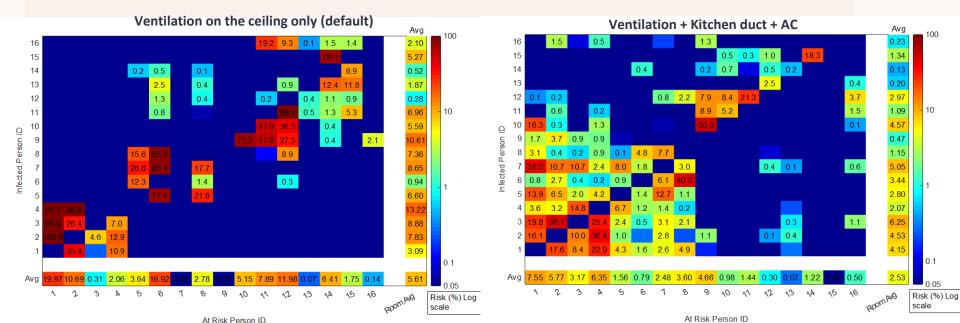

Enormous risk evaluations must carried out independently.


DX of the Aerosol Infection Risk Assessment ▲ウレタンマスク ■ 布マスク(ガーゼ .Time=15.8

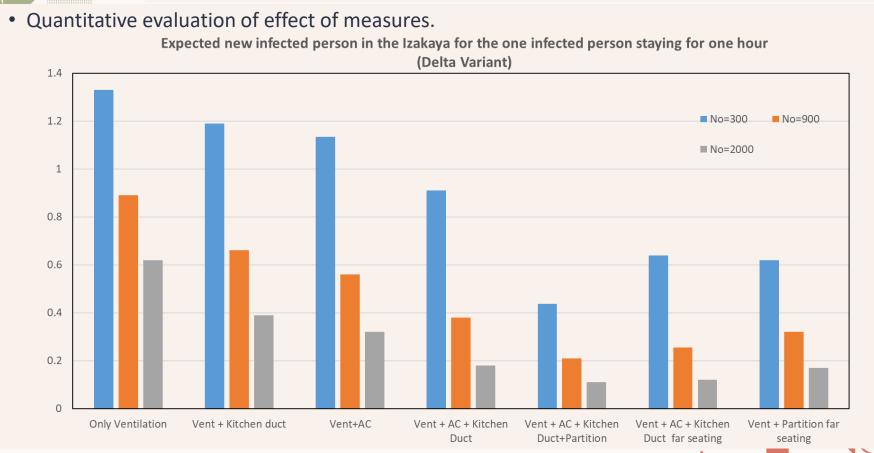
Quantitative Risk Assessment Simulation for Policy and Guideline Making

- Droplet/aerosol dispersion simulation in a Japanese pub restaurant.
- Infection risk assessment and effect of measures in the whole room.



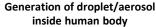

Fresh air in

Quantitative Risk Assessment Simulation for Policy and Guideline Making


- Infection probability matrix in the room.
 - 1 person infected, staying 1 hour under the loudly speaking condition.
 - Kitchen duct and AC works to diverge the local risk in the room.
 - Risk Reduced by half!

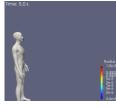
Fresh air supply

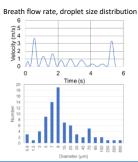
Quantitative Risk Assessment Simulation for Policy and Guideline Making

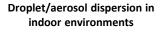


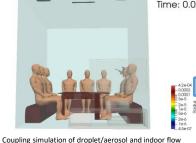
Integrated droplet/aerosol infection risk assessment system

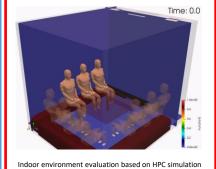
Numerical human body

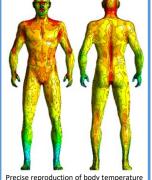

Biological information of an at-risk person

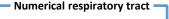


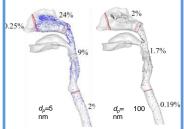


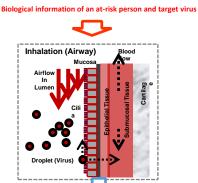





Indoor environment and human allocation




Precise reproduction of human breathing



Reproduction of nasal/oral cavity and respiratory tract

Prediction of deposit distribution of droplet/aerosol on the airway surface and its dependence of droplet size.

Infection risk assessment based on the bio-regulation model

Bioregulation (Host cells, Pathogen, Adaptive Immune System)

$$\frac{dT_T}{dt} = -\beta_T T_T V - \phi F T_T + \xi R \frac{dR}{dt} \qquad \text{(Target Cells)}$$

$$\frac{dI}{dt} = \beta_T T_T V - \kappa_F I F - \kappa_E I T_C - \delta_X I \qquad \text{(Infected Cells)}$$

$$\frac{dV}{dV} = \beta_F I - \delta_V V - \kappa_V V A \qquad (Virus)$$

$$\frac{dF}{dt} = \beta_F I - \kappa_A F$$
 (Interferon)

$$\frac{dT_H}{dt} = \left[\frac{\pi_{H2}D_M}{\pi_{H2} + D_M}\right] (1 - T_H/K_H) - \left[\frac{\delta_{H2}D_M}{\delta_{H2} + D_M}\right] T_H \text{ (Helper T Cells)}$$

$P_I = 1 - \exp(-\frac{Iqp}{I})$