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Abstract

This article describes the context, design, and recent development of the LAPACK for
Clusters (LFC) project. It has been developed in the framework of Self-Adapting Numerical
Software (SANS) since we believe such an approach can deliver the convenience and ease
of use of existing sequential environments bundled with the power and versatility of highly-
tuned parallel codes that execute on clusters. Accomplishing this task is far from trivial as
we argue in the paper by presenting pertinent case studies and possible usage scenarios.
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1 Introduction

Judging by the evolution and current state of the high performance computing in-
dustry, it is rather apparent that a steady growth of performance level is easier to
achieve in hardware than in software. The computer hardware industry (and its high
performance branch in particular) continues to follow Moore’s law [1,2] which on
one hand makes the integrated circuits faster but, on the other hand, more com-
plex and harder to use. At the same time, the software creation process remains
unchanged [3,4]. As the chip fabrication technologies change, the same gate logic
will invariably yield the same performance, regardless of the underlying electronic
circuitry, as long as the clock speed is adequate. In contrast, performance of highly
tuned software can differ drastically downward upon even slight changes in the
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hardware. Consequently, a different approach to software design needs to be taken
as opposed to the practices from the hardware manufacturing community. Self-
Adapting Numerical Software (SANS) systems are intended to meet this significant
challenge [5]. In particular, the LAPACK For Clusters (LFC) project [6] focuses on
issues related to solving linear systems for dense matrices on highly parallel sys-
tems.

Driven by the desire of scientists for ever higher levels of detail and accuracy in
their simulations, the size and complexity of required computations is growing at
least as fast as the improvements in processor technology. Scientific applications
need to be tuned to extract near peak performance even as hardware platforms
change underneath them. Unfortunately, tuning even the simplest real-world opera-
tions for high performance usually requires an intense and sustained effort, stretch-
ing over a period of weeks or months, from the most technically advanced program-
mers, who are inevitably in very scarce supply. While access to necessary comput-
ing and information technology has improved dramatically over the past decade,
the efficient application of scientific computing techniques still requires levels of
specialized knowledge in numerical analysis, mathematical software, computer ar-
chitectures, and programming languages that many working researchers do not
have the time, the energy, or the inclination to acquire. With good reason scien-
tists expect their computing tools to serve them and not the other way around. And
unfortunately, the growing desire to tackle highly interdisciplinary problems using
more and more realistic simulations on increasingly complex computing platforms
will only exacerbate the problem. The challenge for the development of next gen-
eration software is the successful management of the complex computing environ-
ment while delivering to the scientist the full power of flexible compositions of the
available algorithmic alternatives and candidate hardware resources.

With this paper we develop the concept of Self-Adapting Numerical Software for
numerical libraries that execute in the cluster computing setting. The central focus
is the LFC software which supports a serial, single processor user interface, but
delivers the computing power achievable by an expert user working on the same
problem who optimally utilizes the resources of a cluster. The basic premise is to
design numerical library software that addresses both computational time and space
complexity issues on the user’s behalf and in a manner as transparent to the user as
possible. The software intends to allow users to either link against an archived li-
brary of executable routines or benefit from the convenience of prebuilt executable
programs without the hassle of resolving linker dependencies. The user is assumed
to call one of the LFC routines from a serial environment while working on a single
processor of the cluster. The software executes the application. If it is possible to
finish executing the problem faster by mapping the problem into a parallel envi-
ronment, then this is the thread of execution taken. Otherwise, the application is
executed locally with the best choice of a serial algorithm. The details for paral-
lelizing the user’s problem such as resource discovery, selection, and allocation,
mapping the data onto (and off of) the working cluster of processors, executing the



user’s application in parallel, freeing the allocated resources, and returning control
to the user’s process in the serial environment from which the procedure began are
all handled by the software. Whether the application was executed in a parallel or
serial environment is presumed not to be of interest to the user but may be explic-
itly queried. All the user knows is that the application executed successfully and,
hopefully, in a timely manner.

Alternatively, the expert user chooses a subset of processors from the cluster well
suited to address memory and computational demands, initializes the parallel en-
vironment directly, generates the data set locally, in parallel on the working group
in a manner effecting any necessary parallel data structures, and then executes the
same parallel application.

The time spent in executing the application in parallel is, by design, expected to
be the same in both the LFC and expert user cases. One significant difference be-
tween the LFC and expert cases, however, is that the self-adaptive method pays the
time penalty of having to interface the user and move the user’s data on and off the
parallel working group of processors. Thus, for LFC, the time saved executing the
application in parallel should necessarily be greater than the time lost porting the
user’s data in and out of the parallel environment. Empirical studies [6] of comput-
ing the solutions to linear systems of equations demonstrated the viability of the
method finding that (on the clusters tested) there is a problem size that serves as a
threshold. For problems greater in size than this threshold, the time saved by the
self-adaptive method scales with the parallel application justifying the approach. In
other words, the user saves time employing the self-adapting software.

This paper is organized as follows. Section 2 provides a general discussion of self
adaptation and its relation to software and algorithms. Section 3 presents moti-
vation for the general concept of self-adaptation. Section 4 introduces and gives
some details on LFC while sections 5 and 6, respectively, conclude the paper and
acknowledge those that helped in its preparation.

2 Comment on Self-Adaptation

The hardness of a problem, in practice, may be classified by the ratio of the num-
ber of constraints to the number of variables. It is noted that achieving optimized
software in the context described here NR&hard problem [7-13]. Nonetheless,
self-adapting software attempts to tune and approximately optimize a particular
procedure or set of procedures according to details about the application and the
available means for executing the application. Here an attempt is made to provide
a taxonomy of various approaches and a number of limitations that need to be
overcome in order to apply the self-adaptation methodology to a broader range of
applied numerical analyses.



In reviewing the literature, a number of generalizations emerge. First, possible opti-
mizations may be performed through algorithmic, software or hardware changes. In
the context of LFC, this may be illustrated with two important computational ker-
nels: matrix-matrix multiplication and the solution of linear systems of equations.
Table 1 shows some of the common trends for those kernels.

Computational  Algorithmic Software Hardware
kernel choices (implementation)

xGEMM triple-nested loop, based on Level 1 vector processor,
Strassen [14], BLAS, Level 2 superscalar RISC,
Winograd [15] BLAS, or Level 3 VLIW processor

BLAS [16]

Solving a linear explicit inverse, left-looking, right- sequential, SMP,

system of equa- decompositional looking, Crout [17], MPP, constella-

tions method (eg. LU, recursive [18,19] tions [2]
QR, or LL")

Table 1

Common trends in strategies for computational kernels.

Another aspect that differentiates the adaptive approaches is the time when opti-
mization takes place — it may be performed at compilation time (off-line) or dy-
namically during execution (at runtime). The former category includes feedback
directed compilation systems [20—22], while the latter employs two types of tech-
niques: one is to commit to the selected algorithm and the other is to keep monitor-
ing the performance of the selected algorithm and change it when necessary.

Yet another choice to make for an adaptive program is the selection of the search
method for the best solution. It is possible to search exhaustively the entire param-
eter space, to use one of the generic black box optimization techniques, or to keep
reducing the search space through domain-specific knowledge.

Lastly, the inclusion of input data and/or previous execution information in the
optimization process also provides a differentiating factor.

In the context of the aforementioned classification, LFC makes optimization choices
at the software and hardware levels. LFC obtains a best parameter set for the se-
lected algorithm by applying expertise from the literature and empirical investiga-
tions of the core kernels on the target system. The algorithm selection depends on
the size of the input data (but not the content) and empirical results from previous
runs for the particular operation on the cluster. LFC makes these choices at runtime
and, in the current version, commits to the decisions made — e.g. does not monitor
the progress of the computation for load balancing, rescheduling, or checkpoint-
ing. It is conceivable that such a capability is useful and could be built on top of
LFC. Specific hardware resources are selected at runtime based upon their ability
to meet the requirements for solving the user problem efficiently. The main time



constraints considered are the time spent moving the user’s data set on and off the
selected parallel working group of processors, and the time spent executing the spe-
cific application in parallel. The candidate resources have time-evolved information
that is deemed relevant in the process of making this selection.

The ability to adapt to various circumstances may be perceived as choosing from
a collection of algorithms and parameters to solve a problem. Such a concept has
been appearing in the literature [23] and currently is being used in a wide range of
numerical software components.

Here are some examples of successful applications and projects. The ATLAS [24]
project started as atEMM () optimizer” [25] but continues to successfully evolve

by including tuning for all levels of Basic Linear Algebra Subroutines (BLAS) [26—
29] and LAPACK [30] as well as by making decisions at compilation and execution
time. Similar to ATLAS, but much more limited, functionality was included in the
PHIPAC [31] project. Iterative methods and sparse linear algebra operations are the
main focus of numerous efforts. Some of them [32,33] target convergence proper-
ties of iterative solvers in a parallel setting while others [34—38] optimize the most
common numerical kernels or provide intelligent algorithmic choices for the en-
tire problem solving process [39,40]. In the area of parallel computing, researchers
are offering automatic tuning of generic collective communication routines [41]
or specific collectives as in the HPL project [42]. Automatic optimization of the
Fast Fourier Transform (FFT) kernel has also been under investigation by many
scientists [43—-45]. In grid computing environments [46], wholistic approaches to
software libraries and problem solving environments such as defined in the GrADS
project [47] are actively being tested. Proof of concept efforts on the grid employ-
ing SANS components exist [48] and have helped in forming the approach followed
in LFC.

Despite success in applying self-adapting techniques to many areas of applied nu-
merical analysis, challenges do remain. Iterative methods for systems of linear
equations is an example. It is known that an iterative method may fail to converge
even if the input matrix is well conditioned. Recently, a number of techniques have
been devised that try to make iterative methods faster and more robust through ex-
tra storage and work. Those techniques include running multiple iterative methods
at a time and selecting results from the best performing one [33]; dynamic estimat-
ing parameters for the Chebyshev iteration [49,50]; estimating the forward error of
the solution [51]; and reformulations of the conjugate gradient method to make it
perform better in parallel settings [52] to name a few.



3 Motivating Factors

The LFC project aims at simplifying the use of linear algebra software on con-
temporary computational resources, be it a single workstation or a collection of
heterogeneous processor clusters. As described, it may leverage the power of par-
allel processing on a cluster to execute the user's problem or may execute in the
sequential environment.

In dense linear algebra the Level 3 BLAS such as matrix-matrix multiplication
form the basis for many applications of importance. Many modern sequential rou-
tines, for instance, exploit this kernel while executing block recursive steps during
a factorization. Even more advances are available in the shared memory, multi-
threaded variants. An important point in these efforts is that for a problem ofisize
they performO(n?) operations orO(n?) elements — an ideal recipe for data reuse
and latency hiding. The spatial locality of the data due to the proper utilization of
the memory hierarchy ensures good performance in general. Indeed, the LAPACK
software library has been very successful in leveraging the BLAS to achieve out-
standing performance in a sequential setting. One point to be made here is that
extreme care went into devising factorizations of the linear algebra to effectively
utilize the highly tuned performance of the core kernels. In Figure 1, the plot on
the left shows a typical plot of the performance of matrix-matrix multiplication that
has been tuned out-of-the-box with ATLAS on each processor of a sample cluster
of eight Inte@ Pentium Ill, 933 MHz dual processors. It performs at over 90%

of peak forn = 3500, for instance. The plot on the right in Figure 1 presents the
same sequential data against the performance achieved by simply performing the
matrix-matrix multiplication in parallel on a subset &f g) the processors. No at-
tempt was made to tune the parallel kernel in this particular set of runs. The plots
demonstrate the benefits of executing this base kernel in parallel when resources
are available. The finding is not surprising and in fact, once parallel versions of the
BLAS were formulated (PBLAS [53]), the parallel applications routines followed

in the formation of the ScaLAPACK library.

It is noteworthy that matrix-matrix multiplication in the sequential environment
serves as a core kernel for the parallel Level 3 BLAS routines utilized by ScalLA-
PACK. The situation merits a closer look at the kernel in the sequential setting.
There are, for instance, cases where the performance is degraded. Figures 2 and 3

show the performance of this Level 3 BLAS routine on the @tétanium®,

Intel® Itanium®SMP and IBM Power 4 processors, respectively. Matrices of di-
mensions close to 2050 consistently have worse performance than all others due
to complex cache effects. Ideally, in the sense of self-adaptation, the BLAS should
switch to a different algorithm to circumvent this problem. In the current implemen-
tation, however, it does not happen. For users working in a sequential environment,
the problem must be handled or otherwise the consequences paid. This makes the
assumption that the user knows of the problem and has a remedy.



Shared Memory, Threaded Matrix-Matrix Multiply: PIIl, 933MHz dual Serial vs. Parallel Matrix-Matrix Multiply: p<=8 PIll, 933MHz dual processors
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Fig. 1. Typical findings in dense matrix-matrix multiplication on a single node (left)
and ported with no optimization to multiple nodes over Fast Ethernet. Despite excellent
out-of-the-box performance attained by the threaded variant, expert users save time by sim-
ply executing the kernel on multiple processors in parallel. In each pIotﬁrﬁehtium I,

933 MHz dual processors are tested.

Performance of MKL's DGEMM on Itanium Performance of MKL's DGEMM on Itanium with 2 threads

2500
2400
2300
2200
2100
2000
1900
1800
1700
1600
1500
1400

5000

4500

4000

3500

3000

Performance [Mflop/s]

1300
1200
1100
1000
900
800
700
600
500

2040
2041]
2042
2043
2044
2045
2046
2047
2048

Z 2049
. 2050)
. 2051
® 2052
2053
2054
2055

2
X
Q@
N

2056
2057
2058
2059
2060

Performance [Mflop/s]

2500

2000

1500

1000

2040

2041

2042
2043
2044
2045
2046
2047
2048

Z 2049

. 2050)
. 2051

® 2052
2053
2054
2055
2056
2057
2058
2059
2060

8
3
@
N

Fig. 2. Performance of Intél MKL 5.1.1 on Intel® Itanium® 800 MHz with
Intel® Itanium® 800 MHz without with one and two threads.

Another problematic area as far as users’ responsibilities are concerned is the linear
solver. LAPACK requires a tuning parameter — a block size — which is crucial to at-
taining high performance. If LAPACK’s functionality was embedded in an archived
library which was supplied by the vendor then the burden of selecting the block
size would have been removed from the user. However, if the vendor supplies only
a BLAS library then the block size selection is to be made by the user and there
is a possibility of degrading the performance by inappropriate choice. Thus, all the
effort that went into tuning the BLAS may be wasted.

It is possible to solve the problem in a sequential environment because of theoretical
advances [18,19,54] in the decompositional approach in matrix computations. But
in a parallel setting, the procedure is still not mature enough [55] and consequently
there is a need for extra effort when selecting parameters that will define the parallel
runtime environment for the specific application.
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Fig. 3. Performance of Level 3 BLASGEMM() routine from ATLAS 32.1 and
ESSL 3.3.0.0 on IBM Power 4 1.3 GHz processor.

A potential user must, for instance, select the number of processors to accomodate
the problem such that a logically rectangular processor grid can be formed, and
decompose the data according to another set of parameters onto said processors.
Suppose that the data has been handled accurately and with parameters known to
preserve a good computation to communication ratio @taumber of processors

(a non-trivial task in practice). Now, consider Figure 4. The Figure (linear in prob-
lem size, logarithmic in time) compares problem size to time for the ScaLAPACK
application routine that solves systems of linear equations. Both the wall and CPU
times are measured while executing the application on a fixed number (32) of nodes

(each being a Int@ XEON(TM) CPU 2.40GHz dual processor connected over gi-
gabit Ethernet). The possible different grid topologies tested aré4, 2x 32,

4 x 16, and 8x 8. For each topology tested both wall (points) and CPU (lines +
points) times are reported. The wall time is the time the user cares about. The dif-
ference in the two times is accounted for by the time spent coordinating the parallel
application and moving the data set with message passigg eommunication
time The CPU times reported are consistent for each grid topology as expected
since there is an effectively fixed number of computations to be performed for each
problem size. The wall clock times, however, are dramatically different across the
different topologies. It is known that different processor topologies impose differ-
ent communication patterns during execution. Thus, the turnaround time is directly
related to the user’s selection of grid topology even in the instance that the right
number of processors and a judicious block size are given.

Figure 5 illustrates the fact that the situation is more complicated than just selecting
the right grid aspect ratice(g.the number of process rows divided by the number

of process columns). Sometimes it might be beneficial to use a smaller number of
processors. This is especially true if the number of processors is a prime number
which leads to a flat process grid and thus very poor performance on many systems.
It is unrealistic to expect that non-expert users will correctly make the right deci-
sions here. It is either a matter of having expertise or experimental data to guide the
choice and our experiences suggest that perhaps a combination of both is required
to make good decisions consistently. As a side note, with respect to experimental



ScaLAPACK application routine PGESV: 64 processors, block size=80
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Fig. 4. Wall clock(w) and CPU(c) times are reported for solving a system of linear equa-
tions with ScaLAPACK routin@GESV () on 32 Intef<> XEON(TM) 2.40GHz dual proces-
sors and for a pre-determined block size. Problem sizes upka@® reported. Each grid
topology spends effectively the same amount of time in the CPU computing (lines + points)
but clearly the wall time (points only) for each topology is dramatically different in the best
(4 x 16) and worst (X 64) cases.

data, it is worth mentioning that the collection of data for Figure 5 required a num-
ber of floating point operations that would compute the LU factorization of a square
dense matrix of order almost three hundred thousand. Matrices of that size are usu-
ally suitable for supercomputers (the slowest supercomputer on the Top500 [2] list
that factored such a matrix was on position 16 in November 2002).

11000 LFC performance on a cluster of AMD processors
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Fig. 5. Timing results for solving a linear system of ordeK#@ith best and worst possible
processor grid shapes reported.

Lastly, the plots in Figure 6 represent exhaustive search data. Such information
comes from a sweeping parameter study in a dedicated environment and is pro-
vided here to drive home the point that even experienced users have to carefully



initialize the parameters required for a parallel computation using the ScaLAPACK
library. Here, the case of the performance of twenty processors on the cluster is
compared as a function of the block size, problem size, and grid aspect ratio. We
see crossing points in this multi-parameter space which suggests the very real com-
plexity inherent in selecting parameters judiciously. Ideally, given a user’s problem,
an oracle would be consulted and the appropriate parameters would be assigned. In
reality, extreme time and energy go into making such exhaustive studies of applica-
tions and the parameter spaces that dictate their execution. In general, such data do
not exista priori on a target system. Furthermore, in open systems such exhaustive
searches fail to yield reliably intelligent decisions due to the potentially dynamic
state of the available resources.

Parameter Study: Performance of PGESV on the ORANGE (boba) cluster
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9000 g o 10
100007550 6 0 Biocksize

Parameter Study: Performance of PGESV on the ORANGE(boba) cluster

Performance [Gflopis] PGESV: 4¢5 —+—

10000

Fig. 6. Oracle data taken from a dedicated system with a set number of processors. The
parallel application routine is PGESYV, the (LU) linear system solver from ScaLAPACK.
For a user working on an open cluster this multi-parameter space is also changing in time.
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4 LAPACK For Clusters Overview

The LFC software addresses the motivating factors from the previous section in a
self-adapting fashion. LFC assumes that only a C compiler, an MPI [56-58] imple-
mentation such as MPICH [59] or LAM MPI [60], and some variant of the BLAS
routines, be it ATLAS or a vendor supplied implementation, is installed on the tar-
get system. Target systems are intended to be “Beowulf like” and may be depicted
as in the diagram of Figure 7.

Users, etc.

100 Mbit

Network File System
- Sun’s NFS (RPC/UDP

x Gbit Switch, y Mbit Switch,

)
(fully connected) (fully connected)

Remote memory server,
— eg.|

BP(TCP)

Fig. 7. Here a typical cluster setting is depicted. The cluster is regarded as fully connected
locally and sees a network disk that serves users. Users are assumed to be logged into a
compute node of the target cluster on invoking the LFC software.

There are essentially three components to the software: data collection routines,
data movement routines, and application routines.

4.1 Data Collection

LFC uses discovery and adaptivity to assist the user in problem solving. The LFC
routine starts with assessing information that is continually being assembled about
the state of the cluster and the states of the components of the cluster. (The service
is similar to that provided by the Network Weather Service [61], NWS, sensors

in grid computing environments.) The following steps are repeated by the infor-
mation gathering daemon process: a processor discovery routine is invoked that
accounts for the existence of candidate resources, the available physical memory
per processor is assessed, the time-averaged CPU load of each processor in a node

11



is assessed, read/write times per processor to/from the local and network disks is
assessed, point-to-point and global communications latencies and bandwidths on
the cluster are assembled, and the core kernel of matrix-matrix multiplication is
studied per processor. In addition to this data gathering cycle, there is an interest in
the one-time discovery of the underlying memory hierarchy. Random access loads
and stores with uniform and non-uniform stride help with this discovery. Figure 8
shows an example of cache to memory bandwidth discovery.

Sample of Cache Discovery Test Results

cache test —+—
Time(ns): rtw

1.07374e+09
3.35544e+07
1.04858e+06

Stride(8)

Fig. 8. The plot is of the means of times gathered for loading and storing an element from
a block ofsizgB) bytes with a non-uniform stride of sizride(B) bytes. Non-uniform
memory access studies are being studied as a means for obtaining application specific sig-
natures of memory access patterns [62].

One of the difficulties that arises is clock consistency and synchronization. On
homogeneous clusters, the problem is difficult. In a grid computing setting, the
difficulties are amplified. This is a serious issue which software developers need
to address. The main reason is that scheduling tasks based upon empirical analy-
sis conducted on a target system assumes consistency in the resources. LFC uses
matrix-matrix multiplication to assess the consistency of internal clocks accorded
by several timers on each of the processors available.

4.2 Data Movement

In LFC, regardless of the application, the same data structures are assumed. The
user data is assumed to be in core or on a disk accessible from the cluster in ei-
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ther row or column major storage. If the problem is to be ported to the parallel
environment, the two dimensional block cyclical decomposition is applied in each
case. That is, whether the user wants to solve a system of linear equations or an
eigenvalue problem, her/his data set is mapped onto the processors allocated as
the working group with the same data routines and according to the same rules.
The decomposition is known to yield good performance and scalability in (local)
distributed computing settings employing message passing [63—66].

Once a decision has been made to solve the user’s problem in parallel on the clus-
ter, the user data has to be mapped onto a specific subset of the processors and in
a specific (logical) rectangular grid topology. It is noted that the number of proces-
sors, which processors, and what topology are not known in advance. As such, the
mapping has to be general. After the execution of the parallel application, the data
has to be reverse mapped from the parallel environment back to the user’s original
data structure and location.

The dimensionsn, n of the matrixA, the (logical) rectangular processor grid di-
mensiong, g (process rows and columns, respectivg@y, q = Np whereNp is the

total number of processors involved in the decomposition), and the block dimen-
sionsmbnb where(1 < mb<m), (1 < nb < n) are the parameters which define

the 2D block cyclic mapping. The valuesandn are set by the user, however the
remaining parameters are initialized based upon an analysis of the cluster and a
knowledge of the signatures relevant to the particular application. Once the number
of processors, logical process grid dimensions, and the block sizes for the decom-
position are decided, the local memory per allocated processor is determined. The
number of rows from the globafxn matrix A that processors in logical process row

ip (0 <ip < p) own is defined bynp. The number of columns fror that proces-

sors in logical process columag own is defined byq. For processofip,iq) from

the logical process grid tHecal work arrayAp iq has dimensionsyp rows byniq

columns andn= Z.p Omp, n= z%;lo nig Wheremyp, nijq are calulated as follows:

(|1 | - 1)mb, if ((p+ip) modp) < (| ;3] mod p)
]

23

Mip = LL Jmb+mmodmb, if ((p+ip) modp) = ([xp] modp)

[L25) jmb, if ((p-+ip) modp) > (|| mod p)

-O‘

[

([1%) ] + 1)nb, if ((q+iq) moda) < (| {] modaq)
Nig = LLqJanJrnmodnb, if ((q+iq) modq) = (| &) modq) -
LLL:;’Jan, if (q+iq) modq) > (| 5] modq)

(Itis noted that process¢ip, iq) = (0,0) owns the elemerdy o in the presentation
here.)

2=
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In global to local 2D block cyclic index mappings in which natural data is trans-
formed into 2D block cyclically mapped data, the valueg) from A(i, j) are
given. Next, the grid dimension@p,iq) of the processor that owns the specific
element are identified and initialized gs= || mod p andiq = | ;] moda.

The local indices of the work array on proces$qr,iq) can be labellediip, jiq)

where 0<ijp < Mp, 0 < jig < nig. The assignment ig, = LL"I‘;bJJ -mb+ (i mod mb)

P
and jig = LLWCJ]@JJ -nb+ (j modnb).

On a paricular process@ip,iq), given the indicegiip, jiq) of the local work array
Aip,iq (Where 0< ijp < mip,0 < jig < nig), the block dimensionémb, nb), and the
process grid dimension®, q) then the indicesi, j) of the global matrix element
A(i, j) are assigned as follows= ip-mb+ [ & | - p- mb+ (ijp modmb) and j =
iq-nb+ L#‘—?)J -g-nb+ (jig modnb). This is the reverse 2D block cyclic map in
which the mapped data is transformed into natural data.

In the process of mapping the user’s data from the serial environment to the parallel
process group selected by the LFC scheduler, direct global to local index mappings
are not used. The reason is that, clearly, moving a single matrix element at a time
is extremely inefficient. The game is to get the user’s data accurately mapped onto
the parallel process grid as quickly as possible. Serial reads and writes to local
and network based disks, parallel reads from a single file stored on a common,
single network disk, parallel reads and writes from/to multiple files on a (common)
single network disk, and parallel reads and writes from multiple files on multiple
unique network disks are all different possible operations that may be invoked in
the process of handling the user’s data set. Usually, however, it is found that some
combination of these operations is preferred to get the data in place on the cluster in
the correct block cyclical mapping. Furthermore, it is noted that the mapping itself
may occur at the time of the write which may result in multiple filepiemapped

form or a single file reflecting the mapped structure, at the time of a read (e.g.
random access reads into a file, or possibly multiple files, containing the unmapped
data), when the data is communicated during message passing on the cluster, or
parsed locally in memory on each processor after blocks of unmapped data are
read into memory either in parallel or by a subset of lead processors and distributed
through message passing in a manner reflective of the 2D block cyclic mapping.

It is noted that space complexity issues may also be addressed on the users behalf
by interfacing special utility routines. The idea here is that the user wishes to state
and solve a problem that is too large to be addressed on any single node of the
cluster. The utility assists in the generation of the large data set on a subset of the
cluster presuming there is ample total memory to accommodate the problem on the
allocated systems.

Predicting the time to move large data sets in an open network is an active area
of research. In some sense, the limitations are well defined by the IP family of
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protocols and the disk access times. There is no best means for handling the user’s
data. The main constraint is that the integrity of the user’s data set is preserved. The
hope is that this stage can be performed in a timely manner so as to reap the benefits
of the parallel application. LFC researchers are interested in multiple network disk
resources that can be used specifically for assisting in the management of data
sets from linear algebra. Such studies are relevant to grid settings as well as local
clusters. The work is not discussed further here.

4.3 Applications

In the sequential environment, a stand-alone variant of the relevant LAPACK rou-
tines form the backbone of the serial applications in LFC. Achieving high perfor-
mance in a sequential environment might seem trivial for expert users. Thus, we
provide linker hooks to enable such users to use their favorite BLAS library. How-
ever, less experienced users could possibly have problems while dealing with linker
dependencies. For such users, we provide an executable binary that is correctly
built and capable of solving a linear system in a child process with data submit-
ted through a system pipe. Two overheads result from such an approach: the time
spent infork (2) andexec (3) system calls and copying the data between sepa-
rate process’ address spaces. Intuitively, both overheads will have a lesser impact
with increasing dimension of the matrix (the system calls, data copying and linear
solver have computational complexiti€1), O(n?), andO(n®) respectively). To
determine how this theoretical result translates into real world performance, we ran
some tests and Figure 9 shows the results. Matrices of dimension as small as 500
see only 10% of performance drop and the difference decreases to about 1% for
dimension 2000. We believe that for many users this is a price worth paying for
convenience and certainty.
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Fig. 9. Performance comparison between the standard LAPACK's linear solve routine and
the same routine executed in a separate process createtbwitte) andexec (3) system

calls (matrix data are sent through a system pipe). The tested machine haa®aF!ateI
tium 111 933 MHz processor.

15



Driver Cs C, Cm

LU 2/3 3+4+1/4log;Np  Ng(6+log,Np)
LLT  1/3 2+1/2log,Np 4+1og, Np
QR  4/3 3+log;Ne  2(Nglog,Np +1)

Table 2
Performance parameters of ScaLAPACK. All costs entries correspond to a single right-hand
side; LU, LLT and QR correspond ®xGESV, PxPOSV, andPxGELS routines, respectively.

The parallel applications have a stand-alone variant of the relevant ScaLAPACK
and BLACS routines. This allows leveraging a large body of expertise as well as
software design and engineering. It also allows developers to focus on new issues
and address common problems encountered by users.

ScalLAPACK Users’ Guide [67] provides the following equation for predicting the
total timeT spent in one of its linear solvers (FL.LU, or QR) [68]:

cin®  Cn?.  Cyn
T(n,Np) = Np tf+\/N_ptv+ l\r;;tm (1)

where:

e t; time per floating-point operation (matrix-matrix multiplication flop rate is a
good starting approximation)

tm corresponds to latency

1/t corresponds to bandwidth

Cs corresponds to number of floating-point operations (see Table 2)

Cy andCy, correspond to communication costs (see Table 2)

In contrast, for a single processor the equation is:

Tseq(n) =Cs n3tf (2)

The equation (1) yields surprisingly good predictions. The surprise factor comes
from the number of simplifications that were made in the model which was used
to derive the equation. The hard part in using the equation is measuring system pa-
rameters which are related to some of the variables in the equation. The hardship
comes from the fact that these variables do not correspond directly to typical hard-
ware specifications and cannot be obtained through simple tests. In a sense, this
situation may be regarded as if the equation had some hidden constants which are
to be discovered in order to obtain reasonable predictive power. At the moment we
are not aware of any reliable way of acquiring those parameters and thus we rely
on parameter fitting approach that uses timing information from previous runs.
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4.4 Typical Usage Scenario

Here the steps involved in a typical LFC run are described.

The user has a problem that can be stated in terms of linear algebra. The problem
statement is addressable with one of the LAPACK routines supported in LFC. For
instance, suppose that the user has a systenhimméar equations witim unknowns,
Ax=Dh.

There is a parallel computing environment that has LFC installed. The user is, for
now, assumed to have access to at least a single node of said parallel computing
environment. This is not a necessary constraint - rather a simplifying one.

The user compiles the application code (that calls LFC routines) linking with the
LFC library and executes the application from a sequential environment. The LFC
routine executes the application returning an error code denoting success or failure.
The user interprets this information and proceeds accordingly.

Again, the details of how LFC handles the user’s data and allocates a team of pro-
cessors to execute the user’s problem remain hidden to the user. (If desired a user
can ask for details of the actual computation.) From the user’s perspective, the en-
tire problem was addressed locally.

A decision is made upon how to solve the user’s problem by coupling the clus-
ter state information with a knowledge of the particular application. Specifically, a
decision is based upon the scheduler’s ability to successfully predict that a partic-
ular subset of the available processors on the cluster will enable a reduction of the
total time to solution when compared to serial expectations for the specific applica-
tion and user parameters. The relevant times are the time that is spent handling the
user’s data before and after the parallel application plus the amount of time required
to execute the parallel application.

If the decision is to solve the user’s problem locally (sequentially) then the relevant
LAPACK routine is executed.

If the decision is to solve the user’s problem in parallel then a process is forked
that will be responsible for spawning the parallel job and the parent process waits
for its return in the sequential environment. The selected processors are allocated
(in MPI), the user’s data is mapped (block cyclically decomposed) onto the proces-
sors (the data may be in memory or on disk), the parallel application is executed
(e.g. ScaLAPACK), the data is reverse mapped, the parallel process group is freed,
and the solution and control are returned to the user’s process.
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5 Conclusions and Future Work

As computing systems become more powerful and complex it becomes a major
challenge to tune applications for high performance. We have described a concept
and outlined a plan to develop numerical library software for systems of linear
equations which adapts to the users problem and the computational environment in
an attempt to extract near optimum performance. This approach has applications
beyond solving systems of equations and can be applied to most other areas where
users turn to a library of numerical software for their solution.

At runtime our software makes choices at the software and hardware levels for ob-
taining a best parameter set for the selected algorithm by applying expertise from
the literature and empirical investigations of the core kernels on the target system.
The algorithm selection depends on the size of the input data and empirical results
from previous runs for the particular operation on the cluster. The overheads as-
sociated with this dynamic adaptation of the users problem to the hardware and
software systems available can be minimal.

The results presented here show unambiguously that the concepts of self adaptation
can come very close to matching the performance of the best choice in parameters
for an application written for a cluster. As Figure 10 highlights, the overhead to
achieve this is minimal and the performance levels are almost indistinguishable. As
a result the burden on the user is removed and hidden in the software.

This paper has given a high level overview of the concepts and techniques used in
self adapting numerical software. There are a number of issues that remain to be
investigated in the context of this approach [5]. Issues such as adapting to a chang-
ing environment during execution, reproducibility of results when solving the same
problem on differing numbers of processors, fault tolerance, rescheduling in the
presence of additional load, dynamically migrating the computation, etc all present
additional challenges which are ripe for further investigation. In addition, with Grid
computing becoming mainstream, these concepts will find added importance [47].
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the application code.
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