
1

Anatomy of a Globally Recursive Embedded
LINPACK Benchmark

Jack Dongarra∗†‡§, Piotr Luszczek∗
∗Innovative Computing Laboratory, University of Tennessee, Knoxville, TN 37996, USA †Computer Science and
Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee ‡School of Mathematics & School
of Computer Science, University of Manchester ¶Research reported here was partially supported by the National

Science Foundation and Microsoft Research. Email: {dongarra,luszczek}@eecs.utk.edu

Abstract—We present a complete bottom-up implementation
of an embedded LINPACK benchmark on the iPad 2. We use a
novel formulation of a recursive LU factorization that is recursive
and parallel at the global scope. We believe our new algorithm
presents an alternative to existing linear algebra parallelization
techniques such as master-worker and DAG-based approaches.
We show an assembly API that allows us a much higher level
of abstraction and provides rapid code development within the
confines of a mobile device SDK. We use performance modeling
to help with the limitation of the device and the limited access
to the device from the development environment not geared for
HPC application tuning.

I. INTRODUCTION

The debut of the iPad 2 in the first half of 2011 made
widely available a portable device whose Gflop/s per Watt
performance may only be matched by GPU accelerators.
Moreover, ARM has announced a new processor design,
called ARM Cortex-A15, that will increase the performance
many-fold and thus bridge the gap with desktop computers.
Similarly, the accelerator architectures such as IBM CELL and
NVIDIA Fermi that initially shipped with up to an order of
magnitude slower double precision units that caught up with
their single precision counter parts in the second generation
of the hardware – the very situation that we have observed in
the transition from iPad to iPad 2.

The focus of the mobile platforms is primarily on graphical
presentation and gaming with the sole purpose to extract
revenue in a market place that is completely different from the
common HPC practices. The domination of proprietary operat-
ing systems and Software Development Environments (SDKs)
often completely precludes well established optimization tech-
niques such as autotuning due to a complicated app instal-
lation that is far removed the familiar command line shell
paradigm and requires multiple authorization steps to protect
the intellectual property of the hardware, the firmware, and the
software of the mobile device. The common remedy is to by
pass the vendor protections, a process commonly referred to as
jailbreaking. However, the compromised development systems
cannot supply object files nor binaries for the original system
and the end users are unlikely to attempt jailbreaking their
devices for the purpose of a single HPC app.

This material is based upon work supported by the National Science
Foundation.

The confluence of these factors sets a stage for a drastically
different development model. The common tools for compila-
tion and tuning now come from the vendor that is interested
in optimizing different kinds of codes than a usual HPC
workload. And while it is possible to gain substantial insight
from an unencumbered version of the hardware (such as a
jailbroken device) by running the standard set of HPC tools,
the ultimate destination platform remains almost exclusively
outside of the control of the developer.

II. RELATED WORK

Many of the remarks made in the seminal papers on
matrix-matrix multiplication [1], [2], [3], [4] are applicable to
mobile devices. We used the presented techniques extensively
including register and cache blocking. The obvious difference
is the update of the tuning parameters to fit the processor we
target.

Our use of assembly API is reminiscent of CorePy [5]. It
includes a runtime that allows dynamic code generation and
abstract coding features. That project was aimed at x86, Power,
and the CELL architectures. Our assembly API targets ARM
processors exclusively and fits well with hermetic mobile de-
ployment systems with specific development regime. Apple’s
Xcode 4 offers xcodebuild command which would be the
closest to what CorePy requires but it might not be sufficient
for all uses. We feel that CorePy would create a perfect match
for much more open development boards such as PandaBoard.
To summarize, CorePy creates an alternative SDK while our
assembly API supplements it.

Due to the throughput of 2 cycles for its double precision
fused multiply-add instruction, ARM resembles IBM Cell’s
even-odd pipeline and, consequently, much may be learned
from the work done there [6], [7], [8]. The similarities go fur-
ther as ARM is used in gaming devices; it still has to ship with
viable vendor BLAS; has vector floating-point instructions for
single precision only; and there was no proper pipelining for
double precision in the first generation of devices.

III. OPTIMIZING MATRIX-MATRIX MULTIPLY

The majority of the time of the LINPACK benchmark [9] is
spent in matrix-matrix multiply routine called DGEMM (Dou-
ble precision Matrix-Matrix multiply) by BLAS (Basic Linear

2

Platform Instruction Throughput Latency
Add 9-10 9-10

Cortex-A8† Multiply 11-17 11-17
Multiply-Add 19-26 19-26

Add/Sub 1 4
Cortex-A9* Multiply 2 6

Multiply-Add/Sub 2 9
†Based on revision r1p1 of ARM specification
*Based on revision r2p2 of ARM specification
The actual cycle count depends on the data, eg. the presence
of subnormal values, short-circuiting logic of integral values.

TABLE I
ASSEMBLY INSTRUCTION SPECIFICATIONS THAT ARE THE MOST
RELEVANT FOR DOUBLE PRECISION MATRIX-MATRIX MULTIPLY.

Algebra Subprograms) [10], [11]. A specific variant of this
function is commonly referred to as Schur’s complement.

Table I shows the two most recent architectures which were
featured in Apple’s tablets: A4 and A5. The timing specifica-
tion of the processors comes from ARM documents [12], [13]
and closely matches what we could determine with micro-
benchmarking. Apple A4 is based on ARM Cortex-A8 and
A5 on ARM Cortex-A9. The most important difference from
the perspective of a floating-point intensive code is the lack
of pipeling of the FPU (Floating Point Unit). The VFPLite
(also called VFPv3) coprocessor in A4 does not pipeline
either of the double precision instructions. More modern
ARM coprocessors do, however, and this includes VFP10 and
VFP11 designs – they shorten the latency of add and multiply
instructions down to 4 and 5 cycles, respectively.

Another feature worth mentioning is a limited dual-issue ca-
pability of both processors. Only the upcoming ARM Cortex-
A15 is claimed to include much more superscalar capabilities.

We start by constructing a cache reuse model to maximize
the issue rate of floating-point operations. In fact, it is desirable
to finish as many such operations in every cycle as is feasible
given the number of FPU units. The Schur’s complement
kernel has a high memory reuse factor that grows linearly with
the input matrix sizes. Our model is a constrained optimization
problem with discrete parameters:

max
m+n+k≤T

2mnk

2mnk + (mn+mk + nk)
(1)

where m, n, and k are input matrix dimensions and T is the
number of registers or the cache size. The model captures the
number of loads and the floating-point operations in matrix-
matrix multiply for rectangular arguments of sizes m by k, k
by n, and m by n:

C ← C −A×B; A ∈ Rm×k, B ∈ Rk×n, C ∈ Rm×n. (2)

When the fraction given by (1) is maximized, the code
performs the most amount of floating point operations per each
load operation for the kernel under consideration. The number
of floating point registers for the recent ARM processors is 32
and the Level 1 cache is 16 KiB – these are the T values for
our model. Our model points to register blocking with m = 3,
n = 7, and k = 1 which uses 31 registers. Unfortunately, such
register blocking parameters do not fit well with commonly
used matrix sizes and the performance advantage over a next

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
fl
o
p
/s

Matrix size

Registers + 1 Load
Registers + 2 Loads

Single Tile
KBLAS

Non Contiguous
VLDMIA

Fig. 1. Performance of multiple matrix-matrix variants on iPad 2 using a
single core.

best blocking parameters (4, 5, 1) were negligible especially
when the effects of cleanup code are considered [1]. Another
consideration is the cache line size of 32. It determines the
internal register blocking k because the load of the first
element from the cache line will put the remaining values in
the cache as well. By combining this requirement on internal
blocking with the Level 1 cache size we arrived at next level
of blocking parameters: 40, 40, 4, which gives us some room
to spare in cache for inadvertent misses due to associativity
and data misaligment. Optimizations that take into account
additional levels of cache were not considered at this time as
there is evidence of their lesser importance especially in the
context of tile algorithms [14].

We used all the modern C features that allow the compilers
to perform aggressive code optimization. These include pointer
aliasing restrictions (the restrict keyword), alignment specifi-
cation, constant blocking and tiling for loops derived from our
performance model. A further improvement could potentially
be achieved with a more detailed instruction scheduling which
may be achieved with a portable C code by using code labels
as potential targets of goto statements or empty volatile assem-
bly statements both of which prevent the compiler instruction
reordering [15], [16], [17]. Such techniques did not feel natural
to us in this context and we chose the ultimate alternative:
coding in assembly. In the context of mobile space this is
hardly a portability problem as nearly all the devices of interest
to us use the ARM architecture. The use of the assembly offers
independence of the many variables of involved in the process
of taking a optimized code and delivering it to a consumer
device.

Figure 1 shows selected variants of DGEMM. The plots
marked as Registers + 1 Load and Registers + 2 Loads
are shown for reference only because they provide a useful
bounds on the achievable performance. The former performs
only a single load during computation the latter – 2 loads.
The former shows that both C and assembly allow to achieve
peak performance of the single core – 1000 Mflop/s – because
the curve is the same regardless of the source language: C or
assembly. The latter is a more practical bound that shows that

3

func = Function("add2numbers", (("a", Ptr Int32), ("b", Ptr Int32)))
a = Pointer(Int32, LoadArg(RegAlloc(Int32), 1))
b = Pointer(Int32, LoadArg(RegAlloc(Int32), 2))
AddToReg(a, b)
func.save("add2numbers.c")

Fig. 2. Sample function that uses our assembly API for adding two numbers.

MultiLoad([a[0], a[1], a[2], a[3]], A)
A += NB
Load(b[0], B[0+0*NB-NB])
MultiLoad([c[0][0], c[1][0], c[2][0], c[3][0]], C[0])
FuseMulSub(c[0][0], a[0], b[0])
MoveFromRegToReg(C[0], C[1])
FuseMulSub(c[1][0], a[1], b[0])
AddToReg(C[1], NB)
FuseMulSub(c[2][0], a[2], b[0])

Fig. 3. Fragment of DGEMM code on NB by NB matrix tile written in our
assembly API.

adding one extra load deteriorates performance by 10%. The
remaining plots operate on memory rather than the register file.
Single Tile variant operates on a small 40 by 40 matrix that fits
in cache and written with Python code that generates assembly.
The KBLAS plot shows performance of general purpose
DGEMM blocked for cache [3] and it shows the benefit of
using intermediate buffer – the Non Contiguous variant does
not use such a buffer is visibly inferior. Finally, we show an
assembly version that utilized ARM’s multi-load instruction
denoted with VLDMIA mnemonic. It is inferior to all the other
variants as it stresses the load/store units excessively.If the
wrong instruction mix is used the performance may suffer even
against a code written in a higher level language. This was one
of the motivating factors to develop our own assembly API
described in Section IV to quickly develop multiple variants
to effectively explore the implementation space.

IV. HIGH-LEVEL PROGRAMMING IN ASSEMBLY:
LANGUAGE AS API

The development environments for mobile devices are com-
monly oriented towards non-HPC developer base. The avail-
able mobile SDKs (Software Development Kits) integrate all
aspects of development including compilation, linking, source
code revision control, deployment target selection (hardware
device type or software simulator), application signing and
provisioning, control of resources such as media files (icons
etc.) Under such circumstances, it is nearly impossible to
achieve a fully predictable development environment from the
perspective of floating-point performance. And automation of
the tuning process is yet harder to accomplish. One way to re-
gain predictability at the instruction scheduling level and gain
full independence from the compiler is to use the assembly
language. This is especially important for an operation such
as DGEMM where optimal performance may only be achieved
when the floating-point instruction is dispatched every cycle
or at least as early as the throughput allows. The downsides
of using assembly are well known with low programmer
productivity being the most prominent one. We have addressed
this by treating assembly instructions as API (Application
Programming Interface) calls. There are obvious similarities
with compiler intrinsics but for the purposes of our codes they
do not provide sufficient functionality because on ARM they

compReg1 = RegAlloc(Float64)
compReg2 = RegAlloc(Float64)
commReg = RegAlloc(Float64)

i = 0
while i < 2:
i += 1

computation
FuseMulAdd(compReg1, compReg2)

communication
Load(commReg)

swap the buffers
if i == 1:
compReg1 = RegAlloc(Float64)
compReg2 = RegAlloc(Float64)
commReg = RegAlloc(Float64)

Fig. 4. Sample implementation of the double-buffering technique.

only cover single precision floating-point arithmetic. The API
was implemented as a Python module. A sample code that
uses the functions from the module is shown in Figure 2. The
figure shows a very simple function that adds two integers.
Upon execution, the code will produce a source code of the
function with an inlined assembly that can be used directly
in the graphical code editor for the mobile device. Aside for
automated code generation, our assembly API offers conve-
nient argument manipulation, symbolic register allocation, and
generic instruction names that offer independence from the
ARM’s mnemonic notations (old ARM mnemonics and UAL
– Universal Assembler Language), branch label generation
and scoping, tracking register’s memory location for automatic
store address generation. And obviously the Python code that
calls our assembler API may use all the standard Python
features as deemed appropriate for performance or readability
reasons.

A more evolved example is shown in Figure 3 which
shows the use of vector loads of the ARM processor (API
call: MultiLoad; mnemonic: VLDMIA) and floating point
instructions (API call FuseMulSub; mnemonic: FMAC). It
uses the throughput of 2 of the fuse multiply-add instruction:
floating-point operations are interleaved with load operations.

A common technique for overlapping computation and com-
munication is double-buffering whereby a portion of memory
(or cache or the register file) is used for computing while
the rest is communicated. Implementing this technique in
assembly may be cumbersome as the same piece of code has
to be implemented twice: the second time for the swapped
buffers. However, when using our assembly API this may be
done with only a single copy of code as the buffer swap is
done outside of the code generator. This is shown in Figure 4.

Finally, we also would like to mention an important aspect
of assembly API that we used for debugging purposes – an
often overlooked aspect of HPC development. Since the API
is implemented as a module it is possible to simply import a
different module that implements the same API. We use this
to switch between the backends of our code generator. The
debugging backend produces a portable C code that may be
executed on the devices or, to use better debugging tools, on
a full-featured desktop computer. The functional equivalence

4

function DGETRFR(M, N, column, A, PIV) {
if N == 1 { single column, recursion stops

if IsMine(column) { check of column ownership

idx = IDAMAX(...) compute maximum of modulus

DSCAL(A,1/A(idx)) scale data

PIV(column) = idx set pivot index

} else not my column
while PIV(column) is EMPTY Wait()

Wait() synchronize: wait for pivot
} else {

DGETRFR(M, N/2, column,
A, PIV) recursive call to factor left half

WaitForFlag(pivoting) waiting for pivoting to finish

DLASWP(...) pivoting forward

DTRSM(...) triangular solve

DGEMM(...) Schur’s complement
DGETRFR(M, N-N/2, column+N/2,
A, PIV) recursive call to factor right half

DLASWP(...) pivoting backward

SignalFlag(pivoting) announce pivoting is finished
}

}

Fig. 5. Pseudo-code for the recursive panel factorization.

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
fl
o
p
/s

Matrix size

Tile using KBLAS NoPiv
Tile using asmBLAS NoPiv

Recursive ColMajor KBLAS NoPiv
Recursive ColMajor KBLAS Piv

Block ColMajor KBLAS Piv

Fig. 6. Performance of various implementations of linear system solve on
iPad 2 using a single core.

of the codes generated from the various backends adds a
unique aspect to programming in assembly: portability. This
is reminiscent of how the iPad simulator works on the OS
X desktop machine. The code generated for the simulator
is a x86 binary that calls x86 implementations of the iOS
APIs thus achieving a functional equivalence between the
ARM code for the devices and the desktop binary. Our dual
backend approach works well in this context by delivering a C
implementation that can work on the simulator and an ARM
assembly implementation that works on the device.

V. RECURSIVE LU

The next step is to introduce parallelism in order to take
advantage of the dual-core hardware of the ARM processor.
The commonly used technique to parallelize dense linear
algebra routines is a fork-join model utilized by LAPACK [18]

whereby the inherent parallelism of the hardware is abstracted
away from the user by parallelising the BLAS routines.
By moving the parallelization out of the BLAS, various
scheduling approaches [19], [20] have seen a rekindled interest
together with DAG-based (Direct Acyclic Graph) runtimes for
distributed memory [21], [22], [23].

From the the perspective of the problem at hand, the major
problem with any of these parallelization methods is the fact
that they require the use of a parameter called blocking factor.
The parameter determines the granularity of the critical path
of the algorithm (the so called panel factorization). For the
purposes of the small scale of a mobile device, the blocking
factor creates an imbalance in the computation that may not
be easily hidden when using problem sizes that would fit
in the device’s main memory. We regard this situation as a
form of strong downscaling whereas the system size stays
fixed but the problem gets smaller. Consequently, we turn to
a method of efficiently implementing LU factorization that
does not require a blocking factor. It is often called recursive
LU factorization [24], [25] and aside from lack of need for
a blocking factor, it has good cache properties and often
outperforms other LU implementations. The problem is that
the recursive formulation has not seen a parallel implemen-
tation in a global scope but rather at the local one with
master-worker model being used to distribute computation
with a blocking factor for panel factorization [26], [27]. A
distributed-memory implementation did not deliver the results
that could be used either [28]. Finally, we did not limit the
recursion to only a single panel of the matrix and introduce a
nested parallelism within the panel while globally using a non-
recursive algorithm as was attempted recently [29]. Instead, we
have implemented a new formulation of LU factorization that
is both recursive and parallel in the global scope – a first one
of such kind.

Figure 5 shows the pseudocode of our implementation that
we call DGETRFR which relates to LAPACK’s DGETRF
routine that performs the same operation. The implementation
is very similar to the original sequential version with the
addition of synchronization primitives. In the the terminal
case (N==1) the two threads synchronize to make sure that
the pivot has been found and successfully applied. This is
necessary to ensure that when the recursive call returns both
threads can start applying the data computed by the call. In
the general case (N>1) the extra synchronization occurs to
ensure that the pivoting is finished which is achieved with
a single flag. The calls to WaitForFlag() and SignalFlag()
are the only two extra required for this. The former is very
similar to an atomic compare-and-set operation. Finally, in our
implementation we achieve a complete independence of the
update calls (DLASWP, DTRSM, DGEMM) due to a cyclic
assignment of data to threads. This removes the imbalance
caused by the blocking factor.

Figure 6 shows a performance comparison of various im-
plementation of LU factorization by Gaussian elimination
in iPad 2 using only a single core. Clearly, the recursive
implementation is the fastest (either without pivoting – labeled
Recursive ColMajor KBLAS NoPiv, or with pivoting –
labeled Recursive ColMajor KBLAS Piv). The block im-

5

plementation from LAPACK is competitive only for matrix
sizes below 500. For reference we also included plot for
tile storage versions without pivoting: one using an assembly
matrix-matrix multiply kernel (Tile using asmBLAS NoPiv)
and with an optimized C kernel (Tile using KBLAS NoPiv).
The difference exceeds 10% for most of the matrix sizes which
stresses the importance of using assembly code for this kernel.

VI. MANAGEMENT OF CONCURRENCY AND PARALLELISM

While Apple’s iOS offers a plethora of standard synchro-
nization mechanisms inherited from its OS X lineage we chose
to use lock-less synchronization techniques based on cache
coherency protocols and memory consistency guarantees. Un-
like the approaches [30], [29] that seek to gain performance
advantage from more efficient use of cache, we merely sought
to have a light weight synchronization operation that would aid
our fine grain parallelization method described in Section V.
We consider such a method as an alternative to DAG-based
approaches [31], [32] especially for fine grain workloads.
It encourages synchronization reduction as the algorithm
implementer explicitly identifies the events, occurrence of
which allow progress of the threads of execution. Such an
event-based programming based on consistent memory states
appears more natural to us than mutual exclusion guaranteed
by mutex locks and signaling through condition variables. In
addition, most pthread implementations incur an additional
performance penalty in the form of a memory barrier at every
call to the thread synchronization primitives.

We did not use atomic operations in our synchronization
primitives. In our lock-free synchronization, we heavily rely on
shared-memory consistency – a problematic feature from the
portability standpoint. To address this issue reliably, we make
two basic assumptions about the shared-memory hardware and
the software tools. Both of which, to our best knowledge, are
satisfied on majority of modern computing platforms. From
the hardware perspective, we assume that memory coherency
occurs at the cache line granularity. This allows us to rely
on global visibility of loads and stores to nearby memory
locations. What we need from the compiler is an appropriate
handling of C’s volatile keyword. This, combined with the use
of primitive data types that fit within a single cache line, is
sufficient in preventing unintended shared-memory effects.

VII. PERFORMANCE RESULTS

We present in this section performance results on iPad 2
device from Apple. We believe that the device is powered by
an A5 processor that is based on ARM Cortex-A9 design. It
features two cores and is clocked at 1 GHz. Unfortunately,
we cannot reliably confirm this information as the Apple
corporation is free to modify the processor designs licensed
from ARM Limited and is believed to have done so by utilizing
its various acquisitions such as the purchase of P.A. Semi. Our
benchmarking with a register-only matrix-matrix multiply that
was presented in Section III confirms the 1 GHz claim and the
presence of two cores is clearly visible from the results below.

The runs reported throughout this paper were performed on
a device with only the LINPACK app installed. The airplane

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 500 1000 1500 2000 2500

M
fl
o
p
/s

Matrix size

1 core
2 cores

Fig. 7. Performance of linear system solve based on LU factorization by
Gaussian elimination on iPad 2.

Performance TDP Efficiency
Device Gflop/s Watt Gflop/s per Watt
AMD FireStreama 528 225 2.35
NVIDIA Fermib 515.2 225 2.29
AMD Magny-Coursc 120 115 1.04
Intel Westmered 96 130 0.74
Intel Atome 6.7 8.5 0.79
ARM Cortex-A9 2 0.5 4
aModel 9370 dModel E7-8870
bModel M2050 eModel N570
cModel 6180SE

TABLE II
VARIOUS PERFORMANCE METRICS FOR A WIDE RANGE OF PROCESSORS

AND ACCELERATORS.

mode was enabled to remove the influence of networking on
our runs. We also explicitly removed any background apps.

Figure 7 shows the performance of linear solve through LU
factorization. We see a relatively fast increase of parallelism
which we attribute to the use of recursion and lack of blocking
factor to cause load imbalance impeding parallel performance.
We were able to confirm this result on a PandaBoard device
where it was also possible to compare directly against the most
recent release of ATLAS for ARM – the performance increase
is about 10%.

Finally, in Table II we show a different perspective on the
performance. We gathered the latest (at the time of writing)
double precision performance and power specifications for
various processors and devices from multiple vendors. Inter-
estingly, we can observe three-tier division in terms of the
Gflop/s per Watt metric. In tier one, with about 1 Gflop/s per
Watt, we have desktop and server chips. In tier two, with about
2 Gflop/s per Watt, are accelerators from AMD and NVIDIA.
ARM processor is in the third tier, at 4 Gflop/s per Watt.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented a complete implementation of a LIN-
PACK benchmark for iPad 2. Our performance results show
that good performance may be achieved by combining an
optimized kernels with a novel parallel implementation of the
factorization algorithm. For our future work we are looking

6

into strategies for optimizing other BLAS routines for the
ARM processor. Another possibility is the use of an iterative
refinement technique [33] which would greatly benefit from
NEON engine – ARM’s single-precision vector unit.

ACKNOWLEDGEMENTS

The authors would like to thank Clint Whaley for his helpful
comments regarding the build and installation of ATLAS on
an ARM development board. We would like to also thank Paul
Peltz for his help in dealing with Apple’s App Store.

REFERENCES

[1] R. C. Whaley and J. Dongarra, “Automatically tuned linear algebra
software,” in CD-ROM Proceedings of SuperComputing 1998: High
Performance Networking and Computing, 1998.

[2] R. C. Whaley, A. Petitet, and J. J. Dongarra, “Automated empirical
optimizations of software and the ATLAS project,” Parallel Computing,
vol. 27, no. 1-2, pp. 3–35, 2001.

[3] B. Kågström, P. Ling, and C. V. Loan, “Portable high performance
GEMM-based Level 3 BLAS.” in Proceedings of the 6th SIAM Con-
ference on Parallel Processing for Scientific Computing, Philadelphia,
1993, pp. 339–346.

[4] K. Goto and R. A. van de Geijn, “Anatomy of high-performance matrix
multiplication,” ACM Transactions on Mathematical Software, vol. 34,
no. 3, May 2008, article 12, 25 pages, DOI 10.1145/1356052.1356053.

[5] C. Mueller, “Synthetic programming: User-directed run-time code syn-
thesis for high performance computing,” Ph.D. dissertation, Indiana
University, Bloomington Indiana, 2007.

[6] W. Alvaro, J. Kurzak, and J. Dongarra, “Implementing matrix multipli-
cation on the Cell B. E.” in In Scientific Computing with Multicore and
Accelerators. Chapman & Hall/CRC Computational Science series,
2010, iSBN: 978-1439825365.

[7] J. Kurzak, W. Alvaro, and J. Dongarra, “Optimizing matrix multiplica-
tion for a short-vector SIMD architecture – CELL processor,” Parallel
Computing: Systems & Applications, vol. 35, no. 3, pp. 138–150, 2009,
special Issue: Revolutionary Technologies for Acceleration of Emerging
Petascale Applications.DOI: 10.1016/j.parco.2008.12.010,.

[8] W. Alvaro, J. Kurzak, and J. Dongarra, “Fast and small short vector
simd matrix multiplication kernels for the synergistic processing element
of the CELL processor,” in ICCS’08: International Conference on
Computational Science. Kraków, Poland, 2008: Springer, 2008, lecture
Notes in Computer Science 5101:935-944, DOI: 10.1007/978-3-540-
69384-0 98. Also Tech. Report. UT-CS-08-609 and LAWN 189.

[9] J. J. Dongarra, P. Luszczek, and A. Petitet, “The LINPACK benchmark:
Past, present, and future,” Concurrency and Computation: Practice and
Experience, vol. 15, pp. 1–18, 2003.

[10] J. J. Dongarra, J. D. Croz, I. S. Duff, and S. Hammarling, “Algorithm
679: A set of Level 3 Basic Linear Algebra Subprograms,” ACM
Transactions on Mathematical Software, vol. 16, pp. 1–17, March 1990.

[11] ——, “A set of Level 3 Basic Linear Algebra Subprograms,” ACM
Transactions on Mathematical Software, vol. 16, pp. 18–28, March 1990.

[12] CortexTM-A8, Revision: r1p1, Technical Reference Manual, ARM Lim-
ited, December 13 2006, issue B.

[13] VFP11TM Vector Floating-point Coprocessor for ARM1136JF-S proces-
sor r1p5, Technical Reference Manual, ARM Limited, July 6 2007, issue
H.

[14] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou,
H. Ltaief, P. Luszczek, and S. Tomov, “Numerical linear algebra on
emerging architectures: The PLASMA and MAGMA projects,” Journal
of Physics: Conference Series, vol. 180, 2009.

[15] K. Yotov, K. Pingali, and P. Stodghill, “Automatic measurement of mem-
ory hierarchy parameters,” SIGMETRICS Perform. Eval. Rev., vol. 33,
no. 1, pp. 181–192, 2005.

[16] K. Yotov, S. Jackson, T. Steele, K. Pingali, and P. Stodghill, “Automatic
measurement of instruction cache capacity,” in Proceedings of the 18th
Workshop on Languages and Compilers for Parallel Computing (LCPC),
2005.

[17] A. X. Duchateau, A. Sidelnik, M. J. Garzarán, and D. A. Padua, “P-
ray: A suite of micro-benchmarks for multi-core architectures,” in Proc.
21st Intl. Workshop on Languages and Compilers for Parallel Computing
(LCPC’08), vol. 5335 of Lecture Notes in Computer Science, Edmonton,
Canada, 2008, pp. 187–201.

[18] E. Anderson, Z. Bai, C. Bischof, S. L. Blackford, J. W. Demmel, J. J.
Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling, A. McKenney,
and D. C. Sorensen, LAPACK User’s Guide, Third ed. Philadelphia:
Society for Industrial and Applied Mathematics, 1999.

[19] E. Chan, E. S. Quintana-Orti, G. Quintana-Orti, and R. van de Geijn,
“Supermatrix out-of-order scheduling of matrix operations for smp and
multi-core architectures,” in SPAA ’07: Proceedings of the Nineteenth
ACM Symposium on Parallelism in Algorithms and Architectures, San
Diego, CA, USA, June 9-11 2007, pp. 116–125.

[20] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, “A class of par-
allel tiled linear algebra algorithms for multicore architectures,” ICL,
Tech. Rep. Technical Report, UT-CS-07-600, September 7 2007, also
LAPACK Working Note 191.

[21] J. Poulson, R. van de Geijn, and J. Bennighof, “Parallel algorithms for
reducing the generalized hermitian-definite eigenvalue problem,” The
University of Texas at Austin, Department of Computer Science, Tech.
Rep. Technical Report TR-11-05, February 2011, also FLAME Working
Note #56.

[22] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, A. Haidar, T. Herault,
J. Kurzak, J. Langou, P. Lemariner, H. Ltaief, P. Luszczek, A. YarKhan,
and J. Dongarra, “Distibuted dense numerical linear algebra algorithms
on massively parallel architectures: DPLASMA,” University of Ten-
nessee Computer Science, Tech. Rep. Technical Report, UT-CS-10-660,
September 15 2010.

[23] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, A. Haidar, T. Herault,
J. Kurzak, J. Langou, P. Lemarinier, H. Ltaief, P. Luszczek, A. YarKhan,
and J. Dongarra, “Flexible development of dense linear algebra algo-
rithms on massively parallel architectures with DPLASMA,” in PDSEC-
11: The 12th International Workshop on Parallel and Distributed Scien-
tific and Engineering Computing, Anchorage, AK, USA, May 20 2011.

[24] S. Toledo, “Locality of reference in LU decomposition with partial
pivoting,” SIAM J. Matrix Anal. Appl., vol. 18, no. 4, pp. 1065–1081,
October 1997.

[25] F. G. Gustavson, “Recursion leads to automatic variable blocking for
dense linear-algebra algorithms.” IBM Journal of Research and Devel-
opment, vol. 41, no. 6, pp. 737–755, November 1997.

[26] E. Elmroth and F. G. Gustavson, “New serial and parallel recursive
QR factorization algorithms for SMP systems,” in Proceedings of PARA
1998, 1998.

[27] ——, “Applying recursion to serial and parallel QR factorization leads to
better performance,” IBM J. Res. Develop., vol. 44, no. 4, pp. 605–624,
July 2000.

[28] D. Irony and S. Toledo, “Communication-efficient parallel dense LU
using a 3-dimensional approach,” in Proceedings of the 10th SIAM
Conference on Parallel Processing for Scientific Computing, Norfolk,
Virginia, USA, March 2001.

[29] J. Dongarra, M. Faverge, H. Ltaief, and P. Luszczek, “Exploiting
fine-grain parallelism in recursive LU factorization,” in ParCo 2011
– International Conference on Parallel Computing, Ghent, Belgium,
August 30-September 2 2011.

[30] A. M. Castaldo and R. C. Whaley, “Scaling LAPACK panel operations
using parallel cache assignment,” Proceedings of the 15th ACM SIG-
PLAN symposium on Principles and practice of parallel programming,
pp. 223–232, 2010.

[31] F. Song, A. YarKhan, and J. Dongarra, “Dynamic task scheduling for
linear algebra algorithms on distributed-memory multicore systems,” in
SC ’09: Proceedings of the Conference on High Performance Com-
puting Networking, Storage and Analysis. New York, NY, USA:
ACM, 2009, pp. 1–11, http://doi.acm.org/10.1145/1654059.1654079
DOI: 10.1145/1654059.1654079.

[32] J. Perez, R. Badia, and J. Labarta, “A dependency-aware task-based
programming environment for multi-core architectures,” in Cluster Com-
puting, 2008 IEEE International Conference on, 29 2008-oct. 1 2008,
pp. 142 –151.

[33] J. Langou, J. Langou, P. Luszczek, J. Kurzak, A. Buttari, and J. Don-
garra, “Exploiting the performance of 32 bit floating point arithmetic
in obtaining 64 bit accuracy,” in Proceedings of SC06, Tampa, Florida,
Nomveber 11-17 2006, see http://icl.cs.utk.edu/iter-ref.

