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Abstract

This paper describes Janet package — highly expressive Java language extension that enables convenient creation of
powerful native methods and efficient Java-to-native code interfaces. Java native interface (JNI) is a low-level API that is
rather inconvenient if used directly. Therefore Janet, as the higher-level tool, combines flexibility of JNI with Java’s ease-of-use.
Performance results of Janet-generated interface to the lip library are shown. Java code, which uses lip, is compared with
native C implementation. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Rapid evolution of Java [10] made this language suitable for high-performance computing [1,11,12,16,18,21].
It may be attributed mostly to the fact that Java is portable (i.e., suitable for heterogeneous environments), sim-
ple (i.e., easy to learn), safe (i.e., facilitates debugging), secure (i.e., enables secure distributed computing), and
modern (i.e., is object oriented, employs automatic memory management and uses exceptions to handle erroneous
situations).

With the performance of Java virtual machines (VMs) continuously increasing [12,18], the main issue becomes
the lack of scientific libraries designed for use in Java [7]. This may be overcome with the use of Java native interface
(JNI) [13,20] which makes it possible to integrate Java with existing C/C++ and Fortran code. In practice, such
integration proved to be complicated and so several tools which automate interface creation process have been
developed [8,17]. Automation, however, came at the cost of making the use of the JNI interfaces very cumbersome
and error-prone since at all times the user is required to work at the level of a native machine rather than virtual one.
The Janet (JAva Native ExTensions) 3 package which we describe in this article automates the creation process of
JNI interfaces and still gives full access to all Java features so that the resulting code may refer to Java variables,
objects and classes, throw and handle Java exceptions, synchronize on Java monitors, access Java strings and arrays.
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This functionality is available through ordinary Java syntax instead of inconvenient and complicated JNI function
invocations.

2. Overview of JNI

The JNI [13,20] allows Java code running inside a Java VM to interoperate with applications and libraries written
in other programming languages, such as C/C++ or Fortran. Java methods, which were declared native in Java
class definition, are implemented in a native language. The native code may use JNI calls to interoperate with
the running JVM. Design of JNI enables the native method to perform all the operations that are allowed for a
Java code. However, this functionality is available through a complex set of routines and their parameters and its
abstraction is rather low which makes the development process long, inconvenient and error-prone. Most of the
programming mistakes in created interfaces (which are rather easy to make) lead to runtime errors, which are
hard to track not only because they may appear only under certain circumstances but also are platform-specific
(as are the native languages supported by JNI). Some of such error-prone situations include the following are the
examples of:

Access to Java arrays. To reference Java arrays, native code must invoke special JNI function to lock the array
and obtain the pointer to it. When the array is no longer needed, another function must be called to release the array.
JNI specification does not define the behavior of a program which fails to release the array. In addition, distinct
functions must be used to deal with arrays of different types. The use of improper functions causes runtime errors
rather than compile-time errors. This issue is also related to the access to Java strings.

Access to fields of Java objects. It requires field descriptors which must be obtained first by using: reference to
the class, field name, and its type signature [13]. There are separate lookup functions for static and instance fields.
Also, the accessor functions are different for fields of different types.

Invoking Java methods. It is difficult because method signature includes type signatures of its parameters.
There are also different JNI functions for different invocation modes: instance, static, and non-virtual. As a
result, when the field type or declared parameter type of a method changes, the interface code becomes in-
valid and it has to be modified (in contrast, Java code which uses affected field or method only has to be
recompiled).

Handling exceptions. There is no Java-style way to handle exceptions, which may occur in native methods as a
result of JNI calls (e.g., when Java methods are invoked). Checking whether exception has been thrown requires
explicit query, which is mandatory as the behavior of subsequent JNI calls is undefined when there are pending
exceptions.

Working with Java monitors. Locking and unlocking of Java monitors are two independent operations so frequently
the latter is mistakenly omitted at the runtime, especially within exception handling code.

3. Janet overview

Janet package enables convenient development of native methods and Java-to-native code interfaces by completely
hiding the JNI layer from the user. Still, functionality that can be achieved using JNI may be also achieved with
Janet using ordinary Java syntax.

Janet source file is similar to ordinary Java source file except that it may contain embedded native code. This is
achieved with back-tick (‘) characters as native code delimiters. The native code can easily and directly access Java
variables as Java code would (no need for JNI calls which are inserted by Janet translator).

Janet file is transformed by Janet translator into Java and native language source files, as shown in Fig. 1. The
code that is automatically generated for the user performs, among others, the following operations: determines
necessary type signatures, chooses JNI functions to call, load Java classes, obtains field and method descriptors,
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Fig. 1. Janet translation process.

Fig. 2. “Hello World” program in Janet and resulting Java and C files.
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performs array and string lock and release operations, handles and propagates Java exceptions, and matches monitor
operations.

The simple example of canonical “Hello World” program using Janet is presented in Fig. 2, together with the
files resulting from the translation process.

3.1. Embedding Java expressions into native code

Perhaps the most important feature of Janet is that it allows to embed into native code Java expressions and state-
ments such as class instance creations, string and array operations, field accesses, method invocations, comparisons,
runtime type checks involving use of instanceof operator, assignments, and more.

Below, the example from the interface to the lip [6] runtime library is shown where native function is invoked
on the pointer fetched from the Java object passed as a native method argument.

public static native void maptableFree(Maptable mtab) {
LIP Maptable free(‘mtab.data‘);
}

Janet enables straightforward use of Java arrays at the native side. It also allows to use native code inside embedded
Java expressions, which is useful when indexing Java arrays with native variables:

native int sum(int[] arr) {
intlen=‘arr.length‘; /* embedded Java expression */
int i, sum=0;
for (i=0;i<len;i++) {
sum+=‘arr[#(i)]‘; /* C variable ‘i’ inside Java code */
}
return sum;
}

The previous example also shows a feature of Janet called recursive embedding. First, the method signature
conforms to the Java native method syntax. Second, the native method body constitutes of C code with Java code
embedded in back-ticks (‘). This embedded Java may contain C expressions with #(expr) syntax which in turn may
contain another level of embedded Java (again within back-ticks).

Janet guarantees that the evaluation order of embedded Java expressions is exactly the same as specified in ([10],
Sections 15.5 and 15.6). It means, e.g., that method arguments are always evaluated from left to right, and, what is
more important, Java exceptions immediately break the evaluation process in the place where they occurred.

Java variables can be declared inside a native method implementation and used in subsequent embedded Java
expressions:

native void method(BookStore bs) {
‘Book b;‘
// . . .

‘b=bs.getBook();‘
// . . .

printf(’’%d\n’’, (int)‘b.getPageCount()‘);
}

Use of such variables to hold array references makes it possible to gain control over occurrence of the array
lock/release operations. Locked array will not be released as long as there are some variables referencing it. Without
such variables, the array is released upon reaching the end of the block containing array access expression, or when
the expression is re-evaluated producing different array reference. This is shown by the following code:
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class Dummy {
int[] arr0;
int[] arr1;
native void method() {

‘int local[];‘
int val1, val2;
{
val1=‘arr0[0]‘; /* lock of arr0 */
‘local=arr1;‘ /* new reference to arr1 */
val2=‘local[0]‘; /* lock of arr1 */
} /* arr0 released */
} /* arr1 released */

}

3.2. Exception handling

Exception handling is one of the most error prone aspects of JNI. The user must explicitly check for exceptions
in every possible place where they may occur, i.e., after most of JNI calls, and provide code for handling them. As
exceptions should usually break normal flow of program execution, it becomes easy to decouple array or monitor
lock/release operation pairs in the exception handling code.

Janet provides safe Java-style exception handling model at the native side. This problem is addressed by allowing
use of Java try, catch, finally and throw statements inside the native code. It guarantees that all Java arrays
and monitors are released no matter if exception was thrown or not. Exceptions are always handled by the nearest
applicable catch clause. Uncaught exceptions immediately stop native method execution and propagate to the
Java side as does the IllegalArgumentException in the example below:

native void method() {
‘try‘ {

‘callback();‘
} ‘catch (Throwable e)‘ {
JNI EXCEPTION DESCRIBE();
‘throw new IllegalArgumentException(‘‘thrown from C code’’);‘
}
}

In this example, native code calls Java method callback()which can cause an exception. JNI EXCEPTION
DESCRIBE( ) is the C macro which uses JNI function that prints the exception stack.

Using pure JNI, the method body of this simple example requires 18 lines of code instead of six (see [20]).

3.3. Synchronization

Rather than providing separate functions for monitor lock and unlock operations as JNI does, Janet allows to use
Java synchronized statement inside native code:

native void foo(Object bar) {
‘synchronized(bar)‘ {
native foo();
}
}
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In this way monitors are guaranteed to be eventually unlocked even if the exception occurs insidesynchronized
body.

3.4. Arrays

As it has been shown Janet enables efficient direct access to Java arrays from the native side. However, when the
array is to be processed by external routine the array pointer has to be used. To obtain the pointer, Janet provides
the address fetch operator (&) applicable to array references:

native void qsort(int[] arr) {
jint* ptr;
ptr=‘& arr‘;
qsort(ptr, ‘arr.length‘, sizeof(jint), . . .);
}

Java arrays contain platform-independent Java primitive data types rather than native ones, and these types are not
necessarily the same (jint, jlong, jboolean, jchar, jbyte, jshort, jfloat and jdouble are native
equivalents of Java primitive data types as defined by the JNI). When the array of native data type is desired the
special #& operator may be used on an array reference to perform conversion.

native void polint(float[] xa, float[] ya, . . .) {
polint(‘#&xa‘, ‘#&ya‘, . . .);
}

The general rule is that Java types are converted by Janet to native types with the corresponding names. The
array conversion introduces no performance reduction on platforms where appropriate Java and native types are
equivalent, but it requires allocation and copying of the whole array in the case when they are different.

3.5. Unstructural flow of execution

The usual programming practice inherited from C can lead to a native method code like this:

do {
‘synchronized(foo)‘ {
break;
} /* monitor unlock would occur here */
} while (false);

This code leaves the associated Java monitor locked until the native method returns. C language (unlike, e.g.,
C++) is not expressive enough to enable Janet to handle such situations properly without performing sophisticated
analysis of execution flow. For that reason, Janet forbids in C the use of unstructural flow statements, namelybreak,
continue, goto as well as longjmp() function call, that would bail out of the block in which they appear
(early return is allowed but it is going to become deprecated in future versions as it does not guarantee proper
evaluation of possible finally clauses of surrounding try statements — the Java style return statement will
be introduced instead).

3.6. Performance

Performance of every JNI-based Java-to-native code interface strongly depends on the performance of JNI imple-
mentation used in given Java VM. Our tests have shown that substantial differences may exist even between VMs
which otherwise perform similarly. Moreover, there is absolutely no guarantee that JNI performance is going to
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improve in subsequent versions of any given Java VM (even from the same vendor), in fact, it may as well decrease
as more sophisticated garbage collection techniques and JIT optimizing algorithms are used. This was the case for
both HotSpot Client and Server VMs from SUN’s Java 2 standard edition 1.3 for Linux, which perform JNI calls
much slower than older and generally less efficient Classic VM.

Two most important performance issues that users should be aware of, consider the access to arrays of primitive
data types and invocation of callback methods. According to the specification [13], Java VM is not required to
avoid copying of the whole array (instead of “pinning it down”) when the array pointer is requested through JNI
call. Although all of the JIT-enabled VMs which we have tested were able to pin down the arrays accessed through
GetArrayCritical() routine [13], only few of them (SUN HotSpot Client for Win32, IBM VM 1.3.0 for
Win32, and IBM VM 1.3.0 for Linux) achieved it when less restrictive Get〈type〉Array() routines were used
so the routines of latter type should rather be avoided if possible, as they can degrade the performance when arrays

Fig. 3. Sample Java code for OOC computing with the lip.
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become large enough. Callback method invocation overheads tended to vary between different VMs up to an order
of magnitude, especially for methods with large number of arguments, and were about one order of magnitude more
expensive than the rest of JNI functions. For this reason, intensive callback invocations should be performed with
caution and tested on different VMs.

3.7. Portability

One of the main goals of Janet project is to retain high level of portability of both the tool and resulting code.
The Janet translator is thus written entirely in Java and it can run on Java 2 platform version 1.2.2 and higher. The
generated native code fully conforms to the ANSI C standard and can cooperate with JNI starting from version 1.1
so it will work with JDK 1.1, but it can also benefit from the JNI 1.2 extensions on newer platforms.

The Janet project has grown from the Java interface to the lip runtime library [6,3,4]. The lip library is built on
top of the MPI [15,9,14] and supports both in- and out-of-core (OOC) parallel irregular problems [19,2]. The lip
is built on top of the Message Passing Interface (MPI). The use of the MPI [15] as a communication layer makes the
lip portable. At the same time, there is no support for solving irregular and out-of-core (OOC) problems in Java,
whereas such a support is needed [21]. The latter, together with the portability of the lip, were the most compelling
reasons to choose this library as an example usage of Java-to-native interface created using the techniques described
above. The tests of generated Java interface to lipwere performed [5,3] and they proven that Java can be efficiently
employed to such large scale scientific parallel computations. It introduces rapid software development and safety
to existing native communication layer.

4. Experimental results

Fig. 3 presents a sample of Java version of an OOC test program. The code demonstrates a generic irregular
OOC problem. There are two data arrays — x and y, together with indirection arrays: indices and its local
version l indices. The indirection arrays may be so large that they cannot fit into main memory and, therefore,
must be stored on disk. The data arrays are distributed among the computing nodes. During the computation phase,
transformations of data arrays are performed. Since the data arrays are indexed through indirection arrays which
are altered during the program execution, the data access pattern is not known until runtime.

Fig. 4. Execution time for OOC problem in Java and C, n = 100 and n = 1000.
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Fig. 5. Execution time for OOC problem in Java and C, n = 100 and n = 1000.

The full test programs in C and Java from Fig. 3 were run on a cluster of 10 Linux PCs each with 333 MHz
i686 Celeron processor and 32 MB physical memory. The machines were connected with ethernet and each PC was
equipped with 2 GB local hard disk, while approximately 600 MB of it being available for the program use. The
LAM6.3b1 [14] was used as an MPI implementation together with the Java VM from Java Development Kit version
1.1.7 for Linux. The workload incurred by the call to f() (see Fig. 3) function was controlled with parameter
n. Each of the tests was run twice in C and in Java for two different values of n. The data arrays were of type
double[], whereas index arrays were of type int[].

Fig. 4 shows a small test case where both data and index arrays are small enough to fit into the main memory
(there are three arrays of 360 360 values each). Fig. 5 shows an OOC case where the index array is large enough
(3 603 600 int values) so that it does not fit into the main memory and therefore must be stored on disk. Fig. 6
presents timings for a constant-time problem where both data and index array sizes were proportional to the total
number of the computing nodes N (the array sizes were 180 180 × N values).

It is worth noting that the scalability of the problem in C and Java is very similar, and it depends on the
computation-to-communication ratio. For n = 100, there is a noticeable saddle where the communication and

Fig. 6. Execution time for OOC problem in Java and C, constant time problem, n = 100 and n = 1000.
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I/O costs excess those of computations. It is also important that our problem is a generic one and has random data
distribution, thus it requires a large amount of communication whenever the data is assigned to the computing nodes.

5. Conclusions and future work

This paper describes the new approach to creation of Java-to-native code interfaces. The presented Java language
extension called Janet enables simple, fast and efficient development of such interfaces retaining full control over
their low-level behavior. At this point, our goal is to provide a higher-level tool (with graphical-user interface) thus
enabling the user to graphically design the structure of Java wrappers for a native library. As a result, the tool would
generate Janet code which could be further refined by the user. The fully automatic wrapper generator is also under
consideration with its output being subject to potential refinement by the GUI tool. At the same time, we intend to
apply Janet to enable usage of native resources in the Harness metacomputing framework [11,16].
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of the Fourth European PVM/MPI Users’ Group Meeting on Recent Advances in Parallel Virtual Machine and Message Passing Interface,
Cracow, Poland, November 1997, Springer, Berlin, Lecture Notes in Computer Science 1332, 1997, pp. 135–142.

[18] M. Philippsen, Is Java ready for computational science? in: Proceedings of the Second European Parallel and Distributed Systems
Conference, Vienna, July 1998. http://math.nist.gov/javanumerics/.

[19] J. Saltz, et al., A Manual for the CHAOS Runtime Library, UMIACS Technical Reports CS-TR-3437 and UMIACS-TR-95-34, University
of Maryland, March 1995. ftp://ftp.cs.umd.edu/pub/hpsl/chaos distribution/.

[20] B. Stearns, Trail: Java native interface. http://ftp.javasoft.com/docs/tutorial.zip, directory native1.1/.
[21] G. Zhang, B. Carpenter, G. Fox, X. Li, Y. Wen, The HPspmd model and its Java binding, in: R. Buyya (Ed.), High-Performance Cluster

Computing, Vol. 2: Programming and Applications, Prentice-Hall, Englewood Cliffs, NJ, 1999 (Chapter 14).

Marian Bubak received his MSc degree in Technical Physics and PhD in Computer Science from the University of
Mining and Metallurgy (AGH), Kraków, in 1975 and 1986, respectively. Since graduation he worked at the Institute of
Physics and Nuclear Techniques AGH, and in 1982 he moved to the Institute of Computer Science AGH. At present
he is an Assistant Professor (adjunct) at the Institute of Computer Science AGH and at the Academic Computer Center
CYFRONET AGH, Kraków, Poland. His current research interests include parallel computing and tool support for
distributed applications and systems. He has been served as the program committee member and organizer of several
international conferences in the area of Computational and Computer Science.

Dawid Kurzyniec was born in Kraków, Poland. He received his MSc degree in Computer Science at the University of
Mining and Metallurgy in Kraków in 2000. Currently, he is working as a research associate in the Department of Math
and Computer Science at Emory University in Atlanta. His research interests include distributed computing and object
oriented technologies.

Piotr Łuszczek was born in Kraków, Poland and received his MSc degree in Computer Science at the University of
Mining and Metallurgy in Kraków in 1999. He is currently a PhD student in Computer Science Department at the
University of Tennessee, Knoxville, TN. His research interests include distributed computing and sparse linear algebra.


