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Abstract

We present DPLASMA, a new project related to
PLASMA, that operates in the distributed memory
regime. It uses a new generic distributed Direct Acyclic
Graph engine for high performance computing
(DAGUE). Our work also takes advantage of some of the
features of DAGuE, such as DAG representation that is
independent of problem-size, overlapping of
communication and computation, task prioritization,
architecture-aware scheduling and management of
micro-tasks on distributed architectures that feature
heterogeneous many-core nodes. The originality of this
engine is that it is capable of translating a sequential
nested-loop code into a concise and synthetic format
which it can be interpret and then execute in a distributed
environment. We consider three common dense linear
algebra algorithms, namely: Cholesky, LU and QR
factorizations, to investigate their data driven expression
and execution in a distributed system. We demonstrate
from our preliminary results that our DAG-based
approach has the potential to bridge the gap between the
peak and the achieved performance that is characteristic
in the state-of-the-art distributed numerical softwares on
current and emerging architectures.

Keywords: Linear systems, parallel algorithms,
scheduling and task partitioning

1 Introduction and Motivation

Among the various factors that drive the momentous
changes occurring in the design of microprocessors and
high end systems, three stand out as especially notable:
1) the number of transistors on the chip will continue the
current trend, i.e. double roughly every 18 months, while
the speed of processor clocks will cease to increase; 2)
we are getting closer to the physical limit for the number
and bandwidth of pins on the CPUs and 3) there will be a
strong drift toward hybrid/heterogeneous systems for
petascale (and larger) systems. While the first two
involve fundamental physical limitations that the
state-of-art research today is unlikely to prevail over in
the near term, the third is an obvious consequence of the
first two, combined with the economic necessity of using
many thousands of CPUs to scale up to petascale and
larger systems.

More transistors and slower clocks means multicore
designs and more parallelism required. The modus
operandi of traditional processor design, increase the
transistor density, speed up the clock rate, raise the
voltage has now been blocked by a stubborn set of
physical barriers: excess heat produced, too much power
consumed, too much voltage leaked. Multicore designs
are a natural response to this situation. By putting
multiple processor cores on a single die, architects can
overcome the previous limitations, and continue to
increase the number of gates on the chip without
increasing the power densities. However, despite obvious
similarities, multicore processors are not equivalent to
multiple-CPUs or to SMPs. Multiple cores on the same



chip can share various caches (including TLB!) and they
certainly share the memory bus. Extracting performance
from such configurations of resources means that
programmers must exploit increased thread-level
parallelism (TLP) and efficient mechanisms for
inter-processor communication and synchronization to
manage resources effectively. The complexity of parallel
processing will no longer be hidden in hardware by a
combination of increased instruction level parallelism
(ILP) and pipeline techniques, as it was with superscalar
designs. It will have to be addressed at an upper level, in
software, either directly in the context of the applications
or in the programming environment. As portability
remains a requirement, clearly the programming
environment has to drastically change.

Thicker memory wall means that communication
efficiency will be even more essential. The pins that
connect the processor to main memory have become a
strangle point, with both the rate of pin growth and the
bandwidth per pin slowing down, if not flattening out.
Thus the processor to memory performance gap, which is
already approaching a thousand cycles, is expected to
grow, by 50% per year according to some estimates. At
the same time, the number of cores on a single chip is
expected to continue to double every 18 months, and
since limitations on space will keep the cache resources
from growing as quickly, cache per core ratio will
continue to go down. Problems with memory bandwidth
and latency, and cache fragmentation will, therefore, tend
to become more severe, and that means that
communication costs will present an especially notable
problem. To quantify the growing cost of
communication, we can note that time per flop, network
bandwidth (between parallel processors), and network
latency are all improving, but at exponentially different
rates: 59%/year, 26%/year and 15%/year, respectively.
Therefore, it is expected to see a shift in algorithms’
properties, from computation-bound, i.e. running close to
peak today, toward communication-bound in the near
future. The same holds for communication between
levels of the memory hierarchy: memory bandwidth is
improving 23%/year, and memory latency only
5.5%l/year. Many familiar and widely used algorithms
and libraries will become obsolete, especially dense
linear algebra algorithms which try to fully exploit all
these architecture parameters; they will need to be
reengineered and rewritten in order to fully exploit the
power of the new architectures.

In this context, the PLASMA[ 1] project has developed
several new algorithms for dense linear algebra on shared
memory system based on tile algorithms (see section 2).
In this paper, we present DPLASMA, a new project
related to PLASMA, that operates in the
distributed-memory environment. DPLASMA introduces

a novel approach to schedule dynamically dense linear
algebra algorithms on distributed systems. It is based on
these tile algorithms, using DAGuE [2], a new generic
distributed Direct Acyclic Graph Engine for high
performance computing. This engine supports a DAG
representation independent of problem-size, overlaps
communications with computation, prioritizes tasks,
schedules in an architecture-aware manner and manages
micro-tasks on distributed architectures featuring
heterogeneous many-core nodes. The originality of this
engine resides in its capability of translating a sequential
nested-loop code into a concise and synthetic format
which it can interpret and then execute in a distributed
environment. We consider three common dense linear
algebra algorithms, namely: Cholesky, LU and QR
factorizations, to investigate through the DAGuE
framework their data driven expression and execution in
a distributed system. We demonstrate from preliminary
our results that our DAG-based approach has the
potential to bridge the gap between the peak and the
achieved performance that is characteristic in the
state-of-the-art distributed numerical software on current
and emerging architectures.

The remainder of the paper is organized as follows.
Section 2 describes the related work, Section 3 recalls the
three one-sided factorization based on tile algorithms.
Section 4 presents the DAGuE framework. Finally,
Section 5 gives the experimental results and Section 6
provides the conclusion and future work.

2 Related Work

This paper reflects the convergence of algorithmic and
implementation advancements in the area of dense linear
algebra in the recent years. This section presents the
solutions that laid the foundation for this work, which
include: the development of the class of tile algorithms,
the application of performance-oriented matrix layout
and the use of dynamic scheduling mechanisms based on
representing the computation as a Directed Acyclic
Graph (DAG) [3].

2.1 Tile Algorithms

The tile algorithms are based on the idea of processing
the matrix by square submatrices, referred to as tiles, of
relatively small size. This makes the operation efficient in
terms of cache and TLB use. The Cholesky factorization
lends itself readily to tile formulation, however the same
is not true for the LU and QR factorizations. The tile
algorithms for them are constructed by factorizing the
diagonal tile first and then incrementally updating the
factorization using the entries below the diagonal tile.



This is a very well known concept, that dates back to the
work by Gauss, and is clearly explained in the classic
book by Golub and Van Loan [4] and Stewart [5]. These
algorithms were subsequently rediscovered as very
efficient methods for implementing linear algebra
operations on multicore processors [0, 7, 8, 9, 10].

It is crucial to note that the technique of processing the
matrix by square tiles yields satisfactory performance
only when accompanied by data organization based on
square tiles. This fact was initially observed by
Gustavson [ 1, 12] and recently investigated in depth by
Gustavson, Gunnels and Sexton [ 3]. The layout is
referred to as square block format by Gustavson et al.
and as tile layout in this work. The paper by Elmroth,
Gustavson, Jonsson and Kagstrom [14] provides a
systematic treatment of the subject.

Finally, the well established computational model that
uses DAGs as its representation together with the
dynamic task scheduling have gradually made their way
into academic dense linear algebra packages. The model
is currently used in shared memory codes, such as
PLASMA (University of Tennessee, University of
California Berkeley, University of Denver Colorado) [!]
and FLAME (University of Texas Austin) [15].

2.2 Parameterized Task Graphs

One challenge in scaling to large scale many-core
systems is how to represent extremely large DAGs of
tasks in a compact fashion, incorporating the dependency
analysis and structure within the compact representation.
Cosnard and Loi have proposed the Parameterized Task
Graph [16] as a way to automatically generate and
represent the task graphs implicitly in an annotated
sequential program. The data flow within the sequential
program is automatically analyzed to produce a set of
tasks and communication rules. The resulting compact
DAG representation is conceptually similar to the
representation described in this paper. Using the
parameterized task graph representation various static
and dynamic scheduling techniques were explored by
Cosnard and collaborators [17, 18].

2.3 Task BLAS for distributed linear
algebra algorithms

The Task-based BLAS (TBLAS) project [19, 20] is an
alternative approach to task scheduling for linear algebra
algorithms in a distributed memory environment. The
TBLAS layer provides a distributed and scalable tile
based substrate for projects like ScaLAPACK [21].
Linear algebra routines are written in a way that uses
calls to the TBLAS layer, and a dynamic runtime
environment handles the execution in an environment

consisting of a set of distributed memory, multi-core
computational nodes.

The ScaLAPACK style linear algebra routines make a
sequence of calls to the TBLAS layer. The TBLAS layer
restructure the calls as a sequence of tile-based tasks,
which are then submitted to the dynamic runtime
environment. The runtime accepts additional task
parameters (data items are marked as input, output or
input and output) upon insertion of tasks into the system
and this information is later used to infer the
dependences between various tasks. The tasks can then
be viewed as comprising a DAG with the data
dependences forming the edges. The runtime system
uses its knowledge of the data layout (e.g., block cyclic)
in order to determine where the data items are stored in a
distributed memory environment and decide which tasks
will be executed on the local node and which tasks will
be executed remotely. The portion of the DAG relevant to
the local tasks are retained at each node. Any task whose
dependences are satisfied can be executed by the cores on
the local node. As tasks execute, additional dependences
become satisfied and the computation can progress. Data
items that are required by a remote task are forwarded to
that remote node by the runtime.

This approach to task scheduling scales relatively well,
and has performance that is often comparable to that of
ScalLAPACK. Howeyver, there is an inherent bottleneck in
the DAG generation technique. Each node must execute
the entire ScaLAPACK level computation and generate
all the tasks in the DAG, even though only the portions of
the DAG relevant to that node are retained. Curing this
problem is one of our motivation for creating the DAGuE
framework.

3 Background

All the kernels mentioned below have freely available
reference implementations as part of either the

BLAS [22, 23], LAPACK [24] or PLASMA [1]
sequential kernels. Optimized implementations are
available on a given machine for the BLAS and
LAPACK. Note: PLASMA sequential kernel names do
not follow previous papers. They follow current
PLASMA code terminology.

3.1 Cholesky Factorization

The Cholesky factorization (or Cholesky decomposition)
is mainly used for the numerical solution of linear
equations Ax = b, where A is symmetric and positive
definite. Such systems arise often in physics applications,
where A is positive definite due to the nature of the
modeled physical phenomenon. This happens frequently



FOR k = 0..TILES-1

AILKI[K] < DPOTRF(A[KIK])
FOR m = k+1..TILES-1

Alm][k] « DTRSM(ALKI[K], Alm][k])
FOR n = k+1..TILES-1

Alnl[n] < DSYRK(A[n][k], Aln][n])

FOR m = n+1..TILES-1

Alm][n] « DGEMM(A[m][K], A[n][k], Alm][n])

Figure 1: Pseudocode of the tile Cholesky factorization
(right-looking version).

in numerical solutions of partial differential equations.
The Cholesky factorization of an n x n real symmetric
positive definite matrix A has the form

A=LLT,

where L is an n X n real lower triangular matrix with
positive diagonal elements. In LAPACK the double
precision algorithm is implemented by the DPOTRF
routine. A single step of the algorithm is implemented by
a sequence of calls to the LAPACK and BLAS routines:
DSYRK, DPOTF2, DGEMM, DTRSM. Due to the
symmetry, the matrix can be factorized either as upper
triangular matrix or as lower triangular matrix.

The tile Cholesky algorithm is identical to the block
Cholesky algorithm implemented in LAPACK, except for
processing the matrix by tiles. Otherwise, the exact same
operations are applied. The algorithm relies on four basic
operations implemented by four computational kernels:

DPOTREF: The kernel performs the Cholesky
factorization of a diagonal (triangular) tile 7 and
overrides it with the final elements of the output
matrix.

DTRSM: The operation applies an update to a tile A
below the diagonal tile 7', and overrides the tile A
with the final elements of the output matrix. The
operation is a triangular solve.

DSYRK: The kernel applies an update to a diagonal
(triangular) tile B, resulting from factorization of the
tile A to the left of it. The operation is a symmetric
rank-k update.

DGEMM: The operation applies an update to an
off-diagonal tile C, resulting from factorization of
two tiles A to the left of it. The operation is a matrix
multiplication.

Figure 1 shows the pseudocode of the Cholesky
factorization (the right-looking variant).

3.2 QR Factorization

The QR factorization (or QR decomposition) offers a
numerically stable way of solving full rank
underdetermined, overdetermined, and regular square
linear systems of equations.
The QR factorization of an m x n real matrix A has the
form

A =QR,

where Q is an m x m real orthogonal matrix and R is an
m X n real upper triangular matrix. The traditional
algorithm for QR factorization applies a series of
elementary Householder matrices of the general form

H:I—‘L'va,

where v is a column reflector and 7 is a scaling factor. In
the block form of the algorithm a product of nb
elementary Householder matrices is represented in the
form

HH,...Hy=1-VTVT,

where V is an N x nb real matrix those columns are the
individual vectors v, and T is an nb x nb real upper
triangular matrix [25, 26]. In LAPACK the double
precision algorithm is implemented by the DGEQRF
routine.

Here a derivative of the block algorithm is used called the
tile OR factorization. The ideas behind the tile QR
factorization are well known. The tile QR factorization
was initially developed to produce a high-performance
“out-of-memory” implementation (typically referred to
as “out-of-core”) [27] and, more recently, to produce
high performance implementation on “standard” (x86
and alike) multicore processors [0, 7, 28] and on the
CELL processor [10]. Further more, Demmel et al. [29]
proved that the tile QR factorization was communication
optimal in the sequential case and the parallel case (using
a binary tree).

The algorithm is based on the idea of annihilating matrix
elements by square tiles instead of rectangular panels
(block columns). The algorithm produces “essentially”
the same R factor as the classic algorithm, e.g., the
implementation in the LAPACK library. (Elements may
differ in sign.) However, a different set of Householder
reflectors is produced and a different procedure is
required to build the Q matrix. The tile QR algorithm
relies on four basic operations implemented by four
computational kernels:

DGEQRT: The kernel performs the QR
factorization of a diagonal tile and produces an
upper triangular matrix R and a unit lower triangular
matrix V containing the Householder reflectors. The
kernel also produces the upper triangular matrix T



FOR k = 0..TILES-1

AIKI[K], T[kI[k] « DGEQRT(A[KI[K])
FOR m = k+1..TILES-1

AILKI[K], Alm][k], TIm][k] « DTSQRT(A[KI[K], AlmI[k], TmI[k])
FOR n = k+1..TILES-1

Alk][n] « DORMQR(A[KI[K], T[KI[K], A[kI[n])

FOR m = k+1..TILES-1

A[KI[n], AIm][n] « DSSMQR(A[m][K], T[m][k], A[k]I[n], Alm][n])

Figure 2: Pseudocode of the tile QR factorization.

as defined by the compact WY technique for
accumulating Householder reflectors [25, 26]. The
R factor overrides the upper triangular portion of the
input and the reflectors override the lower triangular
portion of the input. The T matrix is stored
separately.

DTSQRT: The kernel performs the QR factorization
of a matrix built by coupling the R factor, produced
by DGEQRT or a previous call to DTSQRT, with a
tile below the diagonal tile. The kernel produces an
updated R factor, a square matrix V containing the
Householder reflectors and the matrix 7" resulting
from accumulating the reflectors V. The new R
factor overrides the old R factor. The block of
reflectors overrides the corresponding tile of the
input matrix. The T matrix is stored separately.

DORMOQR: The kernel applies the reflectors
calculated by DGEQRT to a tile to the right of the
diagonal tile, using the reflectors V along with the
matrix 7.

DSSMQR: The kernel applies the reflectors
calculated by DTSQRT to two tiles to the right of
the tiles factorized by DTSQRT, using the reflectors
V and the matrix T produced by DTSQRT.

Figure 2 shows the pseudocode of the tile QR
factorization.

3.3 LU Factorization

The LU factorization (or LU decomposition) with partial
row pivoting of an m X n real matrix A has the form

A=PLU,

where L is an m X n real unit lower triangular matrix, U
is an n X n real upper triangular matrix and P is a
permutation matrix. In the block formulation of the
algorithm, factorization of nb columns (the panel) is
followed by the update of the remaining part of the

matrix (the trailing submatrix) [30, 31]. In LAPACK the
double precision algorithm is implemented by the
DGETREF routine. A single step of the algorithm is
implemented by a sequence of calls to the following
LAPACK and BLAS routines: DGETF2, DLASWP,
DTRSM, DGEMM, where DGETF2 implements the
panel factorization and the other routines implement the
update.

Here a derivative of the block algorithm is used called the
tile LU factorization. Similarly to the tile QR algorithm,
the tile LU factorization originated as an
“out-of-memory” (“out-of-core”) algorithm [8] and was
recently rediscovered for the multicore

architectures [7, 28].

Again, the main idea here is the one of annihilating
matrix elements by square tiles instead of rectangular
panels. The algorithm produces different U and L factors
than the block algorithm (e.g., the one implemented in
the LAPACK library). In particular we note that the L
matrix is not lower unit triangular anymore. Another
difference is that the algorithm does not use partial
pivoting but a different pivoting strategy. The tile LU
algorithm relies on four basic operations implemented by
four computational kernels:

DGETREF: The kernel performs the LU factorization
of a diagonal tile and produces an upper triangular
matrix U, a unit lower triangular matrix L and a
vector of pivot indexes P. The U and L factors
override the input and the pivot vector is stored
separately.

DTSTREF: The kernel performs the LU factorization
of a matrix built by coupling the U factor, produced
by DGETREF or a previous call to DTSTREF, with a
tile below the diagonal tile. The kernel produces an
updated U factor and a square matrix L containing
the coefficients corresponding to the off-diagonal
tile. The new U factor overrides the old U factor.
The new L factor overrides the corresponding
off-diagonal tile. New pivot vector P is created and
stored separately. Due to pivoting, the lower
triangular part of the diagonal tile is scrambled and
also needs to be stored separately as L.

DGESSM: The kernel applies the transformations
produced by the DGETREF kernel to a tile to the
right of the diagonal tile, using the L factor and the
pivot vector P.

DSSSSM: The kernel applies the transformations
produced by the DTSTREF kernel to the tiles to the
right of the tiles factorized by DTSTREF, using the L’
factor and the pivot vector P.



FOR k = 0..TILES-1

ALKI[K], T[kI[k] « DGETRF(A[KI[K])
FOR m = k+1..TILES-1

ALKIIK], AlmI[K], TIm][k] « DTSTRF(ALK][K], AlmI[k], TIm][K])
FOR n = k+1..TILES-1

A[K][n] « DGESSM(A[KI[K], TIKI[k], A[kI[n])

FOR m = k+1..TILES-1

A[KI[n], Alm][n] « DSSSSM(A[m][k], TImI[k], A[K][n], Alm][n])

Figure 3: Pseudocode of the tile LU factorization.

Figure 3 shows the pseudocode of the tile LU
factorization.

One topic that requires further explanation is the issue of
pivoting. Since in the tile algorithm only two tiles of the
panel are factorized at a time, pivoting only takes place
within two tiles at a time, a scheme which could be
described as block-pairwise pivoting. Clearly, such
pivoting is not equivalent to the “standard” partial row
pivoting in the block algorithm (e.g., LAPACK). A
different pivoting pattern is produced, and also, since
pivoting is limited in scope, the procedure could
potentially result in a less numerically stable algorithm.
More details on the numerical stability of the tile LU
algorithm can be found in [7].

4 The DAGuE Framework

This section introduces the DAGuE framework [2], a new
runtime environment system which efficiently schedules
dynamically tasks in a distributed environment. The tile
QR factorization is used as a test case to explain how the
overall execution is performed in parallel.

4.1 Description

The originality of this framework for distributed
environment resides in the fact that its starting point is a
sequential nested-loop user-application, similar to the
pseudocode from Fig. 1-3. The framework then translates
it in DAGuE’s internal representation called JDF, which
is a concise parameterized representation of the
sequential program’s DAG. This intermediate
representation is eventually used as input to trigger the
parallel execution by the DAGUE engine. It includes the
input and output dependencies for each task, decorated
with additional information about the behavior of the
task.

For an NTxNT tile matrix, there are &' (NT?) tasks. The
memory requirement to store the full DAG quickly
increases with NT. In order to have a scalable approach,
DAGuE however uses symbolic interpretation to

schedule tasks without unrolling the JDF in memory at
any given time, and thus spares computation cycles to
walk the DAG, and memory to keep a global
representation. So, basically this synthetic representation
allows the internal dependencies management
mechanism to efficiently compute the flow of data
between tasks without having to unroll the whole DAG,
and to discover on the fly the communications required to
satisfy these dependencies. Indeed, the knowledge of the
IN and OUT dependencies, accessible from any task to
any task, ascendant or descendant, is sufficient to
implement a fully distributed scheduling engine for the
underlying DAG. At the same time, the concept of
looking variants (i.e., right-looking, left-looking,
top-looking) present in LAPACK and ScaLAPACK
becomes obsolete with this representation as the
execution is now data-driven and dynamically scheduled.
Such representation is expected to be internal to the
DAGUuE framework though, and not a programming
language at user disposal. The framework is still in an
early stage of development and it does not attempt to
compute automatically the data and task distribution. The
user is thus required to manually add such information in
the JDF.

From a technical point of view, the main goal of the
scheduling engine is to select a task for which all the IN
dependencies are satisfied, i.e. the data is available
locally, select a core where to run the task and execute
the body of the task when it is scheduled. Once executed,
release all the OUT dependencies of this task, thus
making more tasks available to be scheduled. It is
noteworthy to mention that the scheduling mechanism is
architecture aware, taking into account not only the
physical layout of the cores, but also the way different
cache levels and memory nodes are shared between the
cores. This allows to determine the best target core, i.e.
the one that minimizes the number of cache misses and
data movements over the memory bus.

The DAGuUE engine is obviously responsible of moving
data from one node to another when necessary. The
framework language introduces a type qualifier called
modifier, expressed as MPI datatypes in the current
version. It tells the communication engine what is the
shape of the data to be transferred from a remote location
to another. By default, the communication engine uses a
default data type for the tiles (the user defines it to fit the
tile size of the program). But the framework has also the
capability to transfer any shapes of data. Indeed,
sometimes, only a particular area of the default data type
must be conveyed. Again, at this stage, the user has still
to manually specify how the transfers must be done using
these modifiers. Moreover, the data tracking engine is
capable to understand if the different modifiers overlap,
and appropriately behave when tracking the data



dependencies. One should note that the DAGuE engine
allows modifier settings on both, input and output
dependencies, so that one can change the shape of the
data on the fly during the communication.

4.2 A Test Case: QR Factorization

A realistic example of the DAGuUE’s internal
representation for the QR factorization is given in Fig. 4.
As stated in the previous section, this example has been
obtained starting from the sequential pseudocode shown
in Fig. 2 using the DAGUE’s translation tools. The logic
to determine the task distribution scheme has been
hard-coded and could be eventually provided by
auto-tuning techniques. The tile QR consists of four
kernel operations: DGEQRT, DSSMQR, DORMQR, and
DTSQRT. For each operation, we define a function (lines
1 to 13 for DGEQRT) that consists of 1) a definition
space (DGEQRT is parametrized by k, the step of the
factorization, that takes values between 0 and NT — 1); 2)
a task distribution in the process space (DGEQRT (k)
runs on the process that verifies the two predicates of
lines 5 and 6); 3) a set of data dependencies (lines 7 to 13
for DGEQRT(k)); and 4) a body that holds the effective
C-code that will eventually be executed by the scheduling
engine (the body has been excluded from the picture).
Dependencies apply on data that are necessary for the
execution of the task, or that are produced by the task.
For example, the task DGEQRT uses one data V as input,
and produces two data, a modified version of the input V,
and T a data locally produced by the task. Input data,
such as V, are indicated using the left arrow (and the
optional IN keyword). They can come either from input
matrix (local to the task, or located on a remote process),
or from the output data of another task (executed either
locally, or remotely). For example, the V of DGEQRT (k)
comes either from the original matrix located in tile A(0,
0) if k==0, or from the output data C2 of task
DSSMQR(k-1, k, k) otherwise. Output dependencies,
marked with an right arrow (and the optional OUT
keyword), work in the same manner. In particular,
DGEQRT produces V which can be sent to DTSQRT and
DORMQR depending on the values of k. These
dependencies are marked with a modifier (line 8 and 9) at
their end: [U] and [L] for DTSQRT and DORMQR,
respectively. This tells the DAGuE engine that the
functions DTSQRT and DORMQR only require the strict
lower part of V and only the upper part of V as inputs,
respectively. The whole tile could have been transferred
instead, but this would engender two main drawbacks:
(1) communicating more data than required and (2) add
extra dependencies into the DAG which will eventually
serialize the DORMQR and DTSQRT calls. This works
in the same manner for output dependencies. For

example, in line 10, only the lower part of V is written
and stored on the memory in the lower part of the tile
pointed by A(k, k). Also, a data that is sent to memory is
final, meaning that no other task will modify its contents
until the end of the DAG execution. However, this does
not prevent other tasks from using it as a read-only input.

-- local - >

— comm —>

Figure 5: DAG of QR for a 4x4 tile matrix.

Fig. 5 depicts the complete unrolled DAG of a 4x4 tiles
QR, as resulting from the execution of the previously
described DAG on a 2x2 processor grid. The color
represents the task to be executed (DGEQRT, DORMQR,
DTSQRT and DSSMQR), while the border of the circles
represents the node where the tasks has been executed.
The edges between the tasks represents the data flowing
from one tasks to another. A solid edge indicate that the
data is coming from a remote resource, while a dashed
edge indicate a local output of another task.

5 Performance Results

This section shows some preliminary results of the tile
Cholesky, tile QR and tile LU with the DAGuE engine on
today’s distributed systems.

5.1 Hardware Descriptions

The Kraken system is a Cray XTS5 with 8256 compute
nodes interconnected with SeaStar, a 3D torus. Each
compute node has two six-core AMD Opterons (clocked



DGEQRT(k) (high_priority) 36 DORMQR(k,n) (high_priority)
// Execution space 37 // Execution space
k = 0..NT—1 38 k = 0..NT-2
// Parallel partitioning 39 n =k+1..NT-1
: (k / rtileSIZE) % GRIDrows == rowRANK 40 // Parallel partitioning
: (k / ctileSIZE) % GRIDcols == colRANK 41 : (k / rtileSIZE) % GRIDrows == rowRANK
V <— (k==0) ? A(0,0) : C2 DSSMQR(k—1.,k,k) 42 : (n / ctileSIZE) % GRIDcols == colRANK
—> (k==NT-1) ? A(k,k) : R DISQRT(k,k+1) [U] 43 T <— T DGEQRT(k) [T]
—> (k!=NT—-1) ? V1 DORMQR(k, k+1..NT—1) [L] 44 V1 <— V DGEQRT(k) [L]
—> A(k,k) [L] 45 Cl <— (k==0) ? A(k,n) : C2 DSSMQR(k—1,n,k)
T —> T DORMQR(k, k+1..NT—1) [T] 46 —> CI1 DSSMQR(k,n,k+1)
—> T(k.,k) [T] 47
48  DSSMQR(k,n,m)
DTISQRT(k,m) (high_priority) 49 /!l Execution space
// Execution space 50 k=0 .. NT-2
k = 0..NT-2 51 n = k+1 .. NT-—1
m= k+1..NT-1 52 m = k+1 .. NT-I
// Parallel partitioning 53 // Parallel partitioning
: (m / rtileSIZE) % GRIDrows == rowRANK 54 : (m / rtileSIZE) % GRIDrows == rowRANK
: (k / ctileSIZE) % GRIDcols == colRANK 55 : (n / ctileSIZE) % GRIDcols == colRANK
V2 <— (k==0) ? A(m,0) : C2 DSSMQR(k—1.,k,m) 56 V2 <— V2 DTISQRT(k ,m)
—> V2 DSSMQR(k,k+1..NT—1,m) 57 T <— T DISQRT(k,m) [T]
—> A(m, k) 58 C2 <— (k==0) ? A(m,n) : C2 DSSMQR(k—1,n,m)
R <— (m==k+1) ? V DGEQRT(k) : 59 —> (n==k+1 & m==k+1) ? V DGEQRT(k+1)
R DTSQRT (k ,m—1) [U] 60 —> (n==k+1 & k<m—1) ? V2 DISQRT(k+1,m)
—> (m==NT-1) ? A(k, k) : 61 —> (k<n—1 & m==k+1) ? C1 DORMQR(k+1,n)
R DTSQRT(k ,m+1) [U] 62 —> (k<n—1 & k<m—1) ? C2 DSSMQR(k+1,n,m)
T —> T DSSMQR(k,k+1..NT—1,m) [T] 63 Cl <— (m==k+1) ? Cl1 DORMQR(k,n) :
—> T(m,k) [T] 64 Cl1 DSSMQR(k,n,m—1)
65 —> (m==NT—-1) ? A (k,n) : Cl DSSMQR(k,n,m+1)

Figure 4: Concise representation of tile QR factorization

at 2.6 GHz) for a total of 99072 cores. All nodes have 16
Gbytes of memory: 4/3 Gbytes of memory per core.
Cray Linux Environment (CLE) 2.2 is the OS on each
node. The Kraken system is located at the National
Institute for Computational Sciences (NICS) at Oak
Ridge National Laboratory.
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IB). The tile Cholesky depends only on the outer
blocking size.

The outer block size (NB) trades off parallelization
granularity and scheduling flexibility with single core
utilization, while the inner block size (IB) trades off
memory load with extra-flops due to redundant
calculations. Hand-tuning of active probing has been
performed to determine the optimal NB and IB for each
factorization. NB = 1800 has been selected for all three
factorizations and /B = 225 for LU and QR
factorizations.

Moreover, in a parallel distributed framework, the
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# cores

Figure 6: Cholesky Weak Scalability.

5.2 Tuning

Maximizing the performance and minimizing the
execution time of scientific applications is a daily
challenge for the HPC community. The tile QR and LU
factorization strongly depend on tunable execution efficient parallelization of the tile QR and LU
parameters trading off utilization of different system factorization algorithms greatly relies on the data
resources, the outer and the inner blocking sizes (NB and  distribution.



There are several indicators of a “good” data distribution
and it is actually a challenge to optimize all of these cost
functions at once. A good distribution has to unlock tasks
on remote nodes as quickly as possible (concurrency), it
has to enable a good load balance of the algorithm, and it
definitely has to minimize communication and data
transfer. ScaLAPACK uses elementwise 2D block cyclic
data distribution as its data layout. The distribution
currently used in DPLASMA is tilewise 2D block cyclic.
As we have raised the level of abstraction from scalar to
tiles when going from LAPACK to PLASMA, we found
it useful to raise the level for the data distribution from
scalar to tiles when going from ScaLAPACK to
DPLASMA. In ScaLAPACK, each process contains an
rSIZE x cSIZE block of scalars and this pattern is
repeated in a 2D block cyclic fashion. In DPLASMA,
each process possesses an rtileSIZE x ctileSIZE block of
tiles (of size NB x NB). This block of tiles enable
multiple cores within a nodes to work concurrently on
the various tiles of the block (as opposed to the
elementwise distribution) while enabling good load
balancing, low communication and great concurrency
among nodes (similarly to elementwise distribution). We
found it best for the tilewise 2D block cyclic distribution
to be strongly rectangular for QR and LU (with more tile
rows than tile columns) and more square for Cholesky.
These facts on tilewise distribution for DPLASMA
matches previous results obtained for elementwise
distribution for ScaLAPACK [32].

QR Weak scalability Cray XT5
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Figure 8: QR Weak Scalability.

5.3 Comparisons

We present our results in Figure 6, Figure 7, and
Figure 8. As we can see the performances obtained by
DAGuE and DPLASMA are comparable to the one of
ScaLAPACK in a weak scaling context.

We want to stress out that the conditions in which
DAGuUE and DPLASMA are tested are not optimal.
There are currently a few points that can be improved.

First of, for QR and LU, we have tested DPLASMA with
square tile 2D block cyclic distribution. The
configuration is depicted in Figure 5. Starting from the
top we see that DGEQRT is executed on node 0,
followed by DTSQRT on node 2, followed by another
DTSQRT on node 0, and another DTSRQT on node 2.
We are doing three inter-node communications. A better
algorithm would be to have DGEQRT on node 0,
followed by DTSQRT on node 0, followed by DTSQRT
on node 2, followed by DTSQRT on node 2. The total
number of inter-node communication is now reduced to 1
(instead of 3). Such an algorithmic is amenable by
playing on the data distribution or by changing the way
the algorithm moves along the data. Overall, the number
of messages sent is &((N/NB) « (N/NB)) and the
volume of messages sent is &((N/NB) « (N/NB) « NB)
which is asymptotically more than ScaLAPACK.
Secondly, we need to improve the broadcast operations in
DAGUuE. Currently the broadcast is implemented with the
root sending the data to each of the recipients. This is
fine for some operations but not for Cholesky, LU or QR
(e.g.). A better way to do the broadcast in this context is
with a ring broadcast as done in [33]. DAGuE needs to
be able to support broadcast topology provided by the
user that are adapted to a given algorithm. The BLACS
(communication layer) has this capacity. Also DAGuE is
not yet able to group messages, this would be useful for
example in the tile LU or QR factorizations where two
arrays need to be broadcasted at once in the same
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