

QUARKQUARK
Queuing And Runtime for Kernels

Innovative Computing Laboratory
Electrical Engineering and Computer Science
University of Tennessee

Piotr Luszczek (presenter)

web.eecs.utk.edu/~luszczek/conf/

ICS Tutorial
Eugene, OR
June 10, 2013

TOC: Table of ContentsTOC: Table of Contents

● Design Principles
● Usage Examples
● Advanced Features

ICS Tutorial
Eugene, OR
June 10, 2013

FOR k = 0..TILES-1

 A[k][k], T[k][k] ← DGRQRT(A[k][k])

 FOR m = k+1..TILES-1

 A[k][k], A[m][k], T[m][k] ← DTSQRT(A[k][k], A[m][k], T[m][k])

 FOR n = k+1..TILES-1

 A[k][n] ← DLARFB(A[k][k], T[k][k], A[k][n])

 FOR m = k+1..TILES-1

 A[k][n], A[m][n] ← DSSRFB(A[m][k], T[m][k], A[k][n], A[m][n])

FOR k = 0..TILES-1

 FOR n = 0..k-1

 A[k][k] ← DSYRK(A[k][n], A[k][k])

 A[k][k] ← DPOTRF(A[k][k])

 FOR m = k+1..TILES-1

 FOR n = 0..k-1

 A[m][k] ← DGEMM(A[k][n], A[m][n], A[m]

[k])

 A[m][k] ← DTRSM(A[k][k], A[m][k])
serial definitionsserial definitions

tile Choleskytile Cholesky

tile QRtile QR

Serial Program: Linear Algebra Loop NestsSerial Program: Linear Algebra Loop Nests

ICS Tutorial
Eugene, OR
June 10, 2013

k = 0; m = my_core_id;
while (m >= TILES) {
 k++; m = m-TILES+k;
} n = 0;

while (k < TILES && m < TILES) {
 next_n = n; next_m = m; next_k = k;

 next_n++;
 if (next_n > next_k) {
 next_m += cores_num;
 while (next_m >= TILES && next_k < TILES) {
 next_k++; next_m = next_m-TILES+next_k;
 } next_n = 0;
 }

 if (m == k) {
 if (n == k) {
 dpotrf(A[k][k]);
 core_progress[k][k] = 1;
 }
 else {
 while(core_progress[k][n] != 1);
 dsyrk(A[k][n], A[k][k]);
 }
 }
 else {
 if (n == k) {
 while(core_progress[k][k] != 1);
 dtrsm(A[k][k], A[m][k]);
 core_progress[m][k] = 1;
 }
 else {
 while(core_progress[k][n] != 1);
 while(core_progress[m][n] != 1);
 dgemm(A[k][n], A[m][n], A[m][k]);
 }
 }
 n = next_n; m = next_m; k = next_k;
}

FOR k = 0..TILES-1

 FOR n = 0..k-1

 A[k][k] ← DSYRK(A[k][n], A[k][k])

 A[k][k] ← DPOTRF(A[k][k])

 FOR m = k+1..TILES-1

 FOR n = 0..k-1

 A[m][k] ← DGEMM(A[k][n], A[m][n], A[m][k])

 A[m][k] ← DTRSM(A[k][k], A[m][k])

codecode

definitiondefinition

fixed task assignment
progress table synchronization

fixed task assignment
progress table synchronization

Parallel Program: Manual MultithreadingParallel Program: Manual Multithreading

ICS Tutorial
Eugene, OR
June 10, 2013

QUARK BasicsQUARK Basics

● Superscalar Scheduling
– serial code
– side-effect-free tasks
– dependency resolution

● Resolving Data Hazards
– Read After Write (RAW)
– Write after Read (WAR)
– Write after Write (WAW)

● Similar Projects
– SMPSs from Barcelona SC
– StarPU from INRIA Bordeaus
– Jade from Stanford (historical)

● Deceptively similar projects
– Cilk (++)
– Intel Thread Building Blocks
– Apple Grand Central Dispatch
– OpenMP Tasks

ICS Tutorial
Eugene, OR
June 10, 2013

void CORE_dtrsm(int side, int uplo,
 int trans, int diag,
 int m, int n,
 double alpha, double *A, int lda,
 double *B, int ldb)
{
 ...
}

void CORE_dtrsm_quark(Quark *quark)
{
 int side, uplo;

int trans, diag;
int m, n;

 double alpha, double *A;
 int lda;
 double *B;
 int ldb;

 quark_unpack_args_11(quark,
side, uplo,
trans, diag,
m, n,
alpha, A, lda,
B, ldb);

 ...
}

side-effect free functionside-effect free function

arguments fetched through a macroarguments fetched through a macro

QUARK: Defining a TaskQUARK: Defining a Task

ICS Tutorial
Eugene, OR
June 10, 2013

CORE_dtrsm(
PlasmaRight, PlasmaLower,
PlasmaTrans, PlasmaNonUnit,

 m, n,
 zone, A(k, k), ldak,
 A(m, k), ldam);

QUARK_Insert_Task(quark, CORE_dtrsm_quark, task_flags,
sizeof(PLASMA_enum), &side, VALUE,
sizeof(PLASMA_enum), &uplo, VALUE,
sizeof(PLASMA_enum), &trans, VALUE,
sizeof(PLASMA_enum), &diag, VALUE,
sizeof(int), &m, VALUE,
sizeof(int), &n, VALUE,
sizeof(double), &alpha, VALUE,
sizeof(double)*nb*nb, A, INPUT,
sizeof(int), &lda, VALUE,
sizeof(double)*nb*nb, B, INOUT | LOCALITY,
sizeof(int), &ldb, VALUE,
0);

Scalars (VALUE) – pass by value semanticsScalars (VALUE) – pass by value semantics

QUARK: Queuing a TaskQUARK: Queuing a Task

ICS Tutorial
Eugene, OR
June 10, 2013

● Tile LU Factorization
● 10 by 10 tiles matrix
● 300 tasks total
● 100 task window

● Tile LU Factorization
● 10 by 10 tiles matrix
● 300 tasks total
● 100 task window

DAG Exploration: Sliding Window Step 0DAG Exploration: Sliding Window Step 0

ICS Tutorial
Eugene, OR
June 10, 2013

DAG Exploration: Sliding Window Step 1DAG Exploration: Sliding Window Step 1

● Tile LU Factorization
● 10 by 10 tiles matrix
● 300 tasks total
● 100 task window

● Tile LU Factorization
● 10 by 10 tiles matrix
● 300 tasks total
● 100 task window

ICS Tutorial
Eugene, OR
June 10, 2013

DAG Exploration: Sliding Window Step 2DAG Exploration: Sliding Window Step 2

● Tile LU Factorization
● 10 by 10 tiles matrix
● 300 tasks total
● 100 task window

● Tile LU Factorization
● 10 by 10 tiles matrix
● 300 tasks total
● 100 task window

ICS Tutorial
Eugene, OR
June 10, 2013

● Tile LU Factorization
● 10 by 10 tiles matrix
● 300 tasks total
● 100 task window

● Tile LU Factorization
● 10 by 10 tiles matrix
● 300 tasks total
● 100 task window

DAG Exploration: Sliding Window Step 3DAG Exploration: Sliding Window Step 3

ICS Tutorial
Eugene, OR
June 10, 2013

● Tile LU Factorization
● 10 by 10 tiles matrix
● 300 tasks total
● 100 task window

● Tile LU Factorization
● 10 by 10 tiles matrix
● 300 tasks total
● 100 task window

DAG Exploration: Sliding Window Step 4DAG Exploration: Sliding Window Step 4

ICS Tutorial
Eugene, OR
June 10, 2013

● Tile LU Factorization
● 10 by 10 tiles matrix
● 300 tasks total
● 100 task window

● Tile LU Factorization
● 10 by 10 tiles matrix
● 300 tasks total
● 100 task window

DAG Exploration: Sliding Window Step 5DAG Exploration: Sliding Window Step 5

ICS Tutorial
Eugene, OR
June 10, 2013

synchronoussynchronous

POTRI:
POTRF
TRTRI
LAUUMasynchronousasynchronous

QUARK Parallel CompositionQUARK Parallel Composition

ICS Tutorial
Eugene, OR
June 10, 2013

QUARK FeaturesQUARK Features

● Cancellation of a task
● Cancellation of a sequence of tasks
● Priority hinting
● Locality (data reuse) hinting
● “Accumulator” tasks (enables

reordering)
● “Gatherv” tasks (allows

simultaneous writes)

● Nested-parallel tasks
● Locking to a thread
● Locking to a thread mask
● Incremental lists of dependencies
● DAG plotting (custom colors,

custom labels)

ICS Tutorial
Eugene, OR
June 10, 2013

QUARK Task CancellationQUARK Task Cancellation

● Cancellation of a task
– Task ID is returned when queuing a task.
– The task ID can be used to cancel a task that has been queued, but has not

been executed yet.
● Cancellation of a sequence of tasks

– Tasks can be grouped in sequences.
– Entire sequence of tasks can be canceled.
– Many sequences can be in flight at the same time.
– One sequence can be canceled without affecting other sequences.

ICS Tutorial
Eugene, OR
June 10, 2013

QUARK HintingQUARK Hinting

● Priority hinting
– Priorities can be assigned to tasks.
– If tasks with different priorities are ready for execution at the same point in

time, the task with the highest priority executes first.
– Priorities provide a way of hinting the critical path.

● Locality (data reuse) hinting
– Locality flag can be assigned to a data item.

● QUARK will try to keep that item on one core.
● If possible, consecutive tasks using that data item will be scheduled to the same

core.

ICS Tutorial
Eugene, OR
June 10, 2013

QUARK: Relaxing DependenciesQUARK: Relaxing Dependencies

● “Accumulator” tasks
– Data item can be flagged with the “accumulator” flag.
– The operation performed on that item is a reduction and QUARK is free to

reorder the tasks to improve scheduling.
● “Gatherv” tasks

– Data item can be flagged with the “gatherv” flag.
– The tasks operate on disjoint parts of the data and can execute

simultaneously without causing race conditions.

ICS Tutorial
Eugene, OR
June 10, 2013

QUARK Locking to ThreadsQUARK Locking to Threads

● Locking to a thread
– A task can be locked to a particular thread.
– Other threads will not be allowed to steal that task through work stealing.

● Locking to a thread mask
– A task can be confined to a subset of threads by using a bit mask.
– QUARK will schedule the task to one of the treads in the bit mask.
– Outside threads will not be allowed to steal that task through work stealing.

ICS Tutorial
Eugene, OR
June 10, 2013

QUARK Controlling GranularityQUARK Controlling Granularity

● Nested-parallel tasks
– The user can have a piece of code that is already multithreaded (using

mutexes / conditional variables / busy waiting / etc.)
– QUARK can schedule such code to a subset of cores and track the

dependencies as if it was a sequential task.
● Incremental lists of dependencies

– Complete list of dependencies for a task may not be know at compile time.
– In such a case, the list of dependencies can be created at runtime.
– First, a task is created with an empty list of dependencies.
– Then dependencies are added (incrementally), e.g. in a loop.

ICS Tutorial
Eugene, OR
June 10, 2013

● Custom colors

● Custom labels

QUARK DAG PlottingQUARK DAG Plotting

ICS Tutorial
Eugene, OR
June 10, 2013

http://icl.utk.edu/quark/ Users' Guide
in /docs/pdf/ after installation

copy & paste “hello world” examples
in /examples/ after installation

QUARK ResourcesQUARK Resources

http://icl.utk.edu/quark/

