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FOR k = 0..TILES-1

    A[k][k], T[k][k] ← DGRQRT(A[k][k])

    FOR m = k+1..TILES-1

        A[k][k], A[m][k], T[m][k] ← DTSQRT(A[k][k], A[m][k], T[m][k])

    FOR n = k+1..TILES-1

        A[k][n] ← DLARFB(A[k][k], T[k][k], A[k][n])

        FOR m = k+1..TILES-1

            A[k][n], A[m][n] ← DSSRFB(A[m][k], T[m][k], A[k][n], A[m][n])

FOR k = 0..TILES-1

    FOR n = 0..k-1

        A[k][k] ← DSYRK(A[k][n], A[k][k])

    A[k][k] ← DPOTRF(A[k][k])

    FOR m = k+1..TILES-1

       FOR n = 0..k-1

            A[m][k] ← DGEMM(A[k][n], A[m][n], A[m]

[k])

        A[m][k] ← DTRSM(A[k][k], A[m][k])
serial definitionsserial definitions

tile Choleskytile Cholesky

tile QRtile QR

Serial Program: Linear Algebra Loop NestsSerial Program: Linear Algebra Loop Nests
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k = 0; m = my_core_id;
while (m >= TILES) {
    k++; m = m-TILES+k;
} n = 0;

while (k < TILES && m < TILES) {
    next_n = n; next_m = m; next_k = k;

    next_n++;
    if (next_n > next_k) {
        next_m += cores_num;
        while (next_m >= TILES && next_k < TILES) {
            next_k++; next_m = next_m-TILES+next_k;
        } next_n = 0;
    }

    if (m == k) {
        if (n == k) {
            dpotrf(A[k][k]);
            core_progress[k][k] = 1;
        }
        else {
            while(core_progress[k][n] != 1);
            dsyrk(A[k][n], A[k][k]);
        }
    }
    else {
        if (n == k) {
            while(core_progress[k][k] != 1);
            dtrsm(A[k][k], A[m][k]);
            core_progress[m][k] = 1;
        }
        else {
            while(core_progress[k][n] != 1);
            while(core_progress[m][n] != 1);
            dgemm(A[k][n], A[m][n], A[m][k]);
        }
    }
    n = next_n; m = next_m; k = next_k;
}

FOR k = 0..TILES-1

    FOR n = 0..k-1

        A[k][k] ← DSYRK(A[k][n], A[k][k])

    A[k][k] ← DPOTRF(A[k][k])

    FOR m = k+1..TILES-1

       FOR n = 0..k-1

            A[m][k] ← DGEMM(A[k][n], A[m][n], A[m][k])

        A[m][k] ← DTRSM(A[k][k], A[m][k])

codecode

definitiondefinition

fixed task assignment
progress table synchronization

fixed task assignment
progress table synchronization

Parallel Program: Manual MultithreadingParallel Program: Manual Multithreading
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QUARK BasicsQUARK Basics

● Superscalar Scheduling
– serial code
– side-effect-free tasks
– dependency resolution

● Resolving Data Hazards
– Read After Write (RAW)
– Write after Read (WAR)
– Write after Write (WAW)

● Similar Projects
– SMPSs from Barcelona SC
– StarPU from INRIA Bordeaus
– Jade from Stanford (historical)

● Deceptively similar projects
– Cilk (++)
– Intel Thread Building Blocks
– Apple Grand Central Dispatch
– OpenMP Tasks
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void CORE_dtrsm(int side, int uplo,
                int trans, int diag,
                int m, int n,
                double alpha, double *A, int lda,
                double *B, int ldb)
{
    ...
}

void CORE_dtrsm_quark(Quark *quark)
{
    int side, uplo;

int trans, diag;
int m, n;

    double alpha, double *A;
    int lda;
    double *B;
    int ldb;

    quark_unpack_args_11(quark,
side, uplo,
trans, diag,
m, n,
alpha, A, lda,
B, ldb);

    ...
}

side-effect free functionside-effect free function

arguments fetched through a macroarguments fetched through a macro

QUARK: Defining a TaskQUARK: Defining a Task
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CORE_dtrsm(
PlasmaRight, PlasmaLower,
PlasmaTrans, PlasmaNonUnit,

    m, n,
    zone, A(k, k), ldak,
          A(m, k), ldam);

QUARK_Insert_Task(quark, CORE_dtrsm_quark, task_flags,
sizeof(PLASMA_enum), &side, VALUE,
sizeof(PLASMA_enum), &uplo, VALUE,
sizeof(PLASMA_enum), &trans, VALUE,
sizeof(PLASMA_enum), &diag, VALUE,
sizeof(int), &m, VALUE,
sizeof(int), &n, VALUE,
sizeof(double), &alpha, VALUE,
sizeof(double)*nb*nb,     A, INPUT,
sizeof(int), &lda, VALUE,
sizeof(double)*nb*nb,     B, INOUT | LOCALITY,
sizeof(int), &ldb,       VALUE,
0);

Scalars (VALUE) – pass by value semanticsScalars (VALUE) – pass by value semantics

QUARK: Queuing a TaskQUARK: Queuing a Task
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● Tile LU Factorization
● 10 by 10 tiles matrix
● 300 tasks total
● 100 task window

● Tile LU Factorization
● 10 by 10 tiles matrix
● 300 tasks total
● 100 task window

DAG Exploration: Sliding Window Step 0DAG Exploration: Sliding Window Step 0
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DAG Exploration: Sliding Window Step 1DAG Exploration: Sliding Window Step 1

● Tile LU Factorization
● 10 by 10 tiles matrix
● 300 tasks total
● 100 task window

● Tile LU Factorization
● 10 by 10 tiles matrix
● 300 tasks total
● 100 task window
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DAG Exploration: Sliding Window Step 2DAG Exploration: Sliding Window Step 2

● Tile LU Factorization
● 10 by 10 tiles matrix
● 300 tasks total
● 100 task window

● Tile LU Factorization
● 10 by 10 tiles matrix
● 300 tasks total
● 100 task window
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● Tile LU Factorization
● 10 by 10 tiles matrix
● 300 tasks total
● 100 task window

● Tile LU Factorization
● 10 by 10 tiles matrix
● 300 tasks total
● 100 task window

DAG Exploration: Sliding Window Step 3DAG Exploration: Sliding Window Step 3
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● Tile LU Factorization
● 10 by 10 tiles matrix
● 300 tasks total
● 100 task window

● Tile LU Factorization
● 10 by 10 tiles matrix
● 300 tasks total
● 100 task window

DAG Exploration: Sliding Window Step 4DAG Exploration: Sliding Window Step 4
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● Tile LU Factorization
● 10 by 10 tiles matrix
● 300 tasks total
● 100 task window

● Tile LU Factorization
● 10 by 10 tiles matrix
● 300 tasks total
● 100 task window

DAG Exploration: Sliding Window Step 5DAG Exploration: Sliding Window Step 5
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synchronoussynchronous

POTRI:
POTRF
TRTRI
LAUUMasynchronousasynchronous

QUARK Parallel CompositionQUARK Parallel Composition
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QUARK FeaturesQUARK Features

● Cancellation of a task
● Cancellation of a sequence of tasks
● Priority hinting
● Locality (data reuse) hinting
● “Accumulator” tasks (enables 

reordering)
● “Gatherv” tasks (allows 

simultaneous writes)

● Nested-parallel tasks
● Locking to a thread
● Locking to a thread mask
● Incremental lists of dependencies
● DAG plotting (custom colors, 

custom labels)
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QUARK Task CancellationQUARK Task Cancellation

● Cancellation of a task
– Task ID is returned when queuing a task.
– The task ID can be used to cancel a task that has been queued, but has not 

been executed yet.
● Cancellation of a sequence of tasks

– Tasks can be grouped in sequences.
– Entire sequence of tasks can be canceled.
– Many sequences can be in flight at the same time.
– One sequence can be canceled without affecting other sequences.
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QUARK HintingQUARK Hinting

● Priority hinting
– Priorities can be assigned to tasks.
– If tasks with different priorities are ready for execution at the same point in 

time, the task with the highest priority executes first.
– Priorities provide a way of hinting the critical path.

● Locality (data reuse) hinting
– Locality flag can be assigned to a data item.

● QUARK will try to keep that item on one core.
● If possible, consecutive tasks using that data item will be scheduled to the same 

core.
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QUARK: Relaxing DependenciesQUARK: Relaxing Dependencies

● “Accumulator” tasks
– Data item can be flagged with the “accumulator” flag.
– The operation performed on that item is a reduction and QUARK is free to 

reorder the tasks to improve scheduling.
● “Gatherv” tasks

– Data item can be flagged with the “gatherv” flag.
– The tasks operate on disjoint parts of the data and can execute 

simultaneously without causing race conditions.
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QUARK Locking to ThreadsQUARK Locking to Threads

● Locking to a thread
– A task can be locked to a particular thread.
– Other threads will not be allowed to steal that task through work stealing.

● Locking to a thread mask
– A task can be confined to a subset of threads by using a bit mask.
– QUARK will schedule the task to one of the treads in the bit mask.
– Outside threads will not be allowed to steal that task through work stealing.
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QUARK Controlling GranularityQUARK Controlling Granularity

● Nested-parallel tasks
– The user can have a piece of code that is already multithreaded (using 

mutexes / conditional variables / busy waiting / etc.)
– QUARK can schedule such code to a subset of cores and track the 

dependencies as if it was a sequential task.
● Incremental lists of dependencies

– Complete list of dependencies for a task may not be know at compile time.
– In such a case, the list of dependencies can be created at runtime.
– First, a task is created with an empty list of dependencies.
– Then dependencies are added (incrementally), e.g. in a loop.
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● Custom colors

● Custom labels

QUARK DAG PlottingQUARK DAG Plotting
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http://icl.utk.edu/quark/ Users' Guide
in /docs/pdf/ after installation

copy & paste “hello world” examples
in /examples/ after installation

QUARK ResourcesQUARK Resources

http://icl.utk.edu/quark/

