

MAGMAMAGMA
Matrix Algebra on GPU and Multicore Architectures

Innovative Computing Laboratory
Electrical Engineering and Computer Science
University of Tennessee

Piotr Luszczek (presenter)

web.eecs.utk.edu/~luszczek/conf/

MAGMA: LAPACK for GPUsMAGMA: LAPACK for GPUs

● MAGMA
– Matrix Algebra for GPU and Multicore Architecture
– To provide LAPACK/ScaLAPACK on hybrid architectures
– http://icl.cs.utk.edu/magma/

● MAGMA BLAS
– A subset of BLAS for GPUs
– Highly optimized for NVIDIA GPGPUs
– Fast GEMM for Fermi

● MAGMA developers & collaborators
– UTK, UC Berkeley, UC Denver, INRIA (France), KAUST (Saudi Arabia)
– Community effort, similar to LAPACK/ScaLAPACK

http://icl.cs.utk.edu/magma/

MAGMA 1.3 Hybrid Tile (PLASMA) Algorithms

single

multi-GPU

distributed

CPU GPUHYBRID

BLAS

BLAS

MAGMA BLAS

LAPACK

CUDA / OpenCL / MIC

● Matlab, Python

MAGMA SPARSE

MAGMA 1.3

StarPU run-time systemPLASMA / QUARK

MAGMA 1.3 Hybrid LAPACK and Tile Kernels

Hybrid LAPACK/ScaLAPACK & Tile Algorithms / MORSE / ParSEC

MAGMA Software StackMAGMA Software Stack

● C/C++, Fortran● Linux, Windows, Mac OS X

MAGMA Functionality MAGMA Functionality
● 80+ hybrid algorithms have been developed (total of 320+ routines)

● Every algorithm is in 4 precisions (s/c/d/z)
● There are 3 mixed precision algorithms (zc & ds)
● These are hybrid algorithms, expressed in terms of BLAS
● MAGMA BLAS

● A subset of GPU BLAS, optimized for Tesla and Fermi GPUs

MAGMA Methodology Overview MAGMA Methodology Overview
 A methodology to use all available resources:

● MAGMA uses hybridization methodology based on
– Representing linear algebra algorithms as collections

of tasks and data dependencies among them
– Properly scheduling tasks' execution over

multicore and GPU hardware components
● Successfully applied to fundamental

linear algebra algorithms
– One- and two-sided factorizations and solvers
– Iterative linear and eigensolvers

● Productivity
– Use high-level description; low-level hidden with

proper abstractions
– Leverage prior efforts
– Exceed the performance of homogeneous solutions

Hybrid CPU+GPU
algorithms
(small tasks for
multicores and
large tasks for GPUs)

Hybrid CPU+GPU
algorithms
(small tasks for
multicores and
large tasks for GPUs)

Hybrid AlgorithmsHybrid Algorithms
● Use case: one-sided factorization

– LU, QR, Cholesky
● Hybridization procedure

– Panels are factored on CPU using LAPACK (or equivalent)
● It is slow on the GPU
● Off-load from GPU to CPU

– Trailing matrix updates are done on the GPU
– Look-ahead helps in hiding communication and panel factorization

Trailing matrix

PA
N

EL

...

A Hybrid Algorithm ExampleA Hybrid Algorithm Example
● Left-looking hybrid Cholesky factorization in MAGMA

● The difference with LAPACK – the 4 additional lines in red
● Line 8 (done on CPU) is overlapped with work on the GPU (from line 6)

LU Factorization (single GPU)LU Factorization (single GPU)

From Single to Multi-GPU SupportFrom Single to Multi-GPU Support
● Data distribution

– 1-D block-cyclic distribution
● Algorithm

– GPU holding current panel is
sending
it to CPU

– All updates are done in parallel on
the GPUs

– Look-ahead is done with GPU
holding
the next panel

GPU
0

GPU
1

GPU
2

GPU
0 . . .

nb

LU Factorization: Multiple GPUsLU Factorization: Multiple GPUs

Matrix too large
for a single GPU
memory

Out of GPU Memory AlgorithmsOut of GPU Memory Algorithms
● Perform left-looking factorizations on sub-matrices

that fit in the GPU memory (using existing algorithms)
● The rest of the matrix stays on the CPU
● Left-looking versions minimize writing on the CPU

1) Copy A2 to the GPU
2) Update A2 using A1 (a panel of A1 at a time)
3) Factor the updated A2 using existing

hybrid code
4) Copy factored A2 to the CPU

Trivially extended to multi-GPUs:
A2 is “larger” with 1-D block cyclic distribution,
again reusing existing algorithms

1) Copy A2 to the GPU
2) Update A2 using A1 (a panel of A1 at a time)
3) Factor the updated A2 using existing

hybrid code
4) Copy factored A2 to the CPU

Trivially extended to multi-GPUs:
A2 is “larger” with 1-D block cyclic distribution,
again reusing existing algorithms

Factored
sub-matric
A1 on CPU

To be
factored

sub-matrix
A2 on GPU

. . .

Untouched
part of the

matrix

 MAGMA
 Hybrid Algorithms
 (heterogeneity friendly)

Rely on
 - hybrid scheduler
 - hybrid kernels

Package Era Features Concept Abstractions

LINPACK 70's Vector
operations

Level-1 BLAS

LAPACK 80's Blocking,
cache friendly

Level-3 BLAS

ScaLAPACK 90's Distributed
memory PBLAS, MPI

PLASMA mid 00's Multicore,
Manycore

DAG scheduler,
tile data layout,
extra kernels

MAGMA late 00's Accelerated
multicore

Hybrid
scheduler,
hybrid kernels

A New Generation of DLA SoftwareA New Generation of DLA Software

Hybrid Algorithms: One-Sided TransformationsHybrid Algorithms: One-Sided Transformations
● One-Sided Factorizations

– LU
– QR, and
– Cholesky

● Hybridization
– Panels (Level 2 BLAS) are factored on CPU using LAPACK
– Trailing matrix updates (Level 3 BLAS) are done

on the GPU using “look-ahead”

● Two-Sided Factorizations
– Bidiagonal singular values
– Tridiagonal symmetric/generalized eigenvalues
– Upper Hessenberg non-symmetric eigenvalues

● Hybridization
– Trailing matrix updates (Level 3 BLAS) are done on the GPU

● Similar to the one-sided factorizations
– Panels (Level 2 BLAS) are hybrid

● Operations with memory footprint restricted to the panel are done on CPU
● The time consuming matrix-vector products involving the entire trailing matrix

 are done on the GPU

Hybrid Algorithms: Two-Sided TransformationsHybrid Algorithms: Two-Sided Transformations

Additional 4x Speedup from Faster GPU BLASAdditional 4x Speedup from Faster GPU BLAS

Keeneland system, using one node
3 NVIDIA GPUs (M2070@ 1.1 GHz, 5.4 GB)
2 x 6 Intel Cores (X5660 @ 2.8 GHz, 23 GB)

A. Haidar, S. Tomov, J. Dongarra, T. Schulthess, and R. Solca, A novel hybrid CPU-GPU generalized eigensolver for electronic
structure calculations based on fine grained memory aware tasks, ICL Technical report, 03/2012.

0 5000 10000 15000 20000 25000 30000
0

50

100

150

200

250

300

DSYTRD (symmetric tri-diag Reduction)

Keenland 3 NVIDIA Fermi M2070 1.1 GHz 5.4 GiB; 2x6 Intel Xeon X5660 2.8 GHz 26 GiB

DSYTRD MKL 12 cores
DSYTRD 1 GPU
DSYTRD 2 GPUs
DSYTRD 3 GPUs
DSYTRD 2-stages 1 GPU

Matrix size

G
flo

p/
s

§ 12 x speedup over 12 Intel cores
(X5660 @2.8 GHz)

§ A two-stage approach leading to
increased computational intensity

Multi-GPU Two-Sided FactorizationsMulti-GPU Two-Sided Factorizations

● Need HPC multi-GPU Level 2 BLAS (e.g., 50% of flops in the
tridiagonal reduction)

T. Dong, J. Dongarra, S. Tomov, I. Yamazaki, T. Schulthess, and R. Solca, Symmetric dense matrix-vector multiplication on multiple
GPUs and its application to symmetric dense and sparse eigenvalue problems, ICL Technical report, 03/2012.

0 5000 10000 15000 20000 25000
0

20

40

60

80

100

120

140

Performance of DSYMV on M2090's

CUBLAS
1 GPU
2 GPUs
3 GPUs

Matrix size

G
flo

p/
s

Hybrid Two-Sided FactorizationsHybrid Two-Sided Factorizations

From Fast BLAS to Fast TridiagonalizationFrom Fast BLAS to Fast Tridiagonalization
Performance of MAGMA DSYTRD on multi M2090 GPUs

Keeneland system, using one node
3 NVIDIA GPUs (M2070@ 1.1 GHz, 5.4 GB)
2 x 6 Intel Cores (X5660 @ 2.8 GHz, 23 GB)

T. Dong, J. Dongarra, S. Tomov, I. Yamazaki, T. Schulthess, and R. Solca, Symmetric dense matrix-vector multiplication on
multiple GPUs and its application to symmetric dense and sparse eigenvalue problems, ICL Technical report, 03/2012.

§ 50 % of the flops are in SYMV

§ Memory bound, i.e. does not scale
well on multicore CPUs

§ Use the GPU’s high memory
bandwidth and optimized SYMV

§ 8 x speedup over 12 Intel cores
(X5660 @2.8 GHz)

From Static to Dynamic Scheduling …From Static to Dynamic Scheduling …
● Static may stall in situations where work is available
● Hand tuned optimizations
● Hardware heterogeneity
● Kernel heterogeneity
● Separation of concerns
● Dynamic Runtime System

Matrices Over Runtime Systems at ExascaleMatrices Over Runtime Systems at Exascale

● MORSE
● Mission statement:

– "Design dense and sparse linear algebra methods that achieve the fastest
possible time to an accurate solution on large-scale Hybrid systems”

● Runtime challenges due to the ever growing hardware complexity
● Algorithmic challenges to exploit the hardware capabilities to the fullest
● Integrated into MAGMA software stack

MAGMA-MORSE: x86 + Multiple GPUsMAGMA-MORSE: x86 + Multiple GPUs

● Lessons Learned from PLASMA
● New high performance numerical kernels
● StarPU Runtime System

– Augonnet et. Al, INRIA, Bordeaux
● Use of both: x86 and GPUs leads to Hybrid Computations
● Similar to LAPACK in functionality

High Productivity: Sequential CodeHigh Productivity: Sequential Code
From Sequential Nested-Loop Code to Parallel Execution
for (k = 0; k < min(MT, NT); k++) {

zgeqrt(A[k;k], ...);

for (n = k+1; n < NT; n++)

zunmqr(A[k;k], A[k;n], ...);

for (m = k+1; m < MT; m++) {

ztsqrt(A[k;k],,A[m;k], ...);

for (n = k+1; n < NT; n++)

ztsmqr(A[m;k], A[k;n], A[m;n], ...);

}

}

High Productivity: Parallel CodeHigh Productivity: Parallel Code
From Sequential Nested-Loop Code to Parallel Execution
for (k = 0; k < min(MT, NT); k++) {

starPU_Insert_Task(&cl_zgeqrt, A, k, k, ...);

for (n = k+1; n < NT; n++)
starPU_Insert_Task(&cl_zunmqr(A, k, n, ...);

for (m = k+1; m < MT; m++) {

 starPU_Insert_Task(&cl_ztsqrt(A m, k, ...);

for (n = k+1; n < NT; n++)

 starPU_Insert_Task(&cl_ztsmqr(A, m, n, k, ...);

}

}

Contact Information and Generous SponsorsContact Information and Generous Sponsors
Stan Tomov
tomov@eecs.utk.edu

MAGMA team
http://icl.cs.utk.edu/magma/

PLASMA team
http://icl.cs.utk.edu/plasma/

Collaborating partners
● University of Tennessee, Knoxville
● University of California, Berkeley
● University of Colorado, Denver
● INRIA, France (StarPU team)
● KAUST, Saudi Arabia

