
1/21bit.ly/siamcse2019

Use of C++ in Computational Science Libraries and Applications

● MS22
– Interfacing Dense Linear Algebra

Libraries in C++, Piotr Luszczek, UTK

– Kokkos Libraries and Applications,
Christian Trott, Sandia

– Benchmarking Modern C++ Abstraction
Penalty, Marcin Zalewski, Andrew
Lumsdaine, U. WA

– Modern C++ in Computation Science,
David Hollman, Sandia

● MS57
– Data Flow Graph Programming for

High-performance Scientific Computing
in C++, Edward Valeev, V Tech

– The Simulation Development
Environment (SDE): A C++ Framework
for Reusable Computational Chemistry,
Ryan Richard, Ames Lab

– Automated Fortran-C++ Bindings for
Scientific Applications, Seth Johnson,
ORNL

Organizers:
Piotr Luszczek, Mark Hoemmen, Heike Jagode, Damien Genet

(travel issues)

(travel issues)

2/21bit.ly/siamcse2019

SIAM CSE19, MS22

Interfacing Dense Linear Algebra Libraries in C++

Piotr Luszczek

(A view from the Foothills of Smokey Mountains)

Monday February 25, 2019

3/21bit.ly/siamcse2019

History and Overview

4/21bit.ly/siamcse2019

History of C++ for Numerical Linear Algebra

● 1993: LAPACK++
● 1993: ScaLAPACK++
● 1994..: a large number of libraries were create for linear algebra in C++

– http://www.netlib.org/utk/people/JackDongarra/la-sw.html
● ..Few libraries are still maintained
● MPI C++ binding rejected
● MPI C++ binding created
● MPI C++ binding abandoned
● More history: C++ committee document P1417
● Guy Davidson and Bob Steagall, Towards Standardization of Linear Algebra

– See later summary of P1385

wg21.link/p1417

wg21.link/p1385

http://www.netlib.org/utk/people/JackDongarra/la-sw.html

5/21bit.ly/siamcse2019

Major C++ Efforts in Dense Linear Algebra

LAPACK

ScaLAPACK

BLAS

CBLAS

LAPACKE

netlib.org

PLASMA

MAGMA

SLATE

OpenMP

PaRSEC

icl.utk.edu/research

scheduling
(multicore & accelerators)

scheduling
(distributed memory with accelerators)

dynamic
runtime

schedulers

LAPACK++

BLAS++

https://bitbucket.org/icl/lapackpp

https://bitbucket.org/icl/blaspp

DPLASMA

http://www.netlib.org/
http://www.icl.utk.edu/research
https://bitbucket.org/icl/lapackpp
https://bitbucket.org/icl/blaspp

6/21bit.ly/siamcse2019

BLAS++ and LAPACK++

7/21bit.ly/siamcse2019

C++ Software and API for Dense Linear Algebra

● BLAS++
– https://bitbucket.org/icl/blaspp

● Batched BLAS++
– https://bitbucket.org/icl/bblaspp

● LAPACK++
– https://bitbucket.org/icl/lapackpp

● SLATE
– http://www.icl.utk.edu/publications/serie

s/swans

● ScaLAPACK++
– LAWN 61

netlib.org/lapack/lawnspdf/lawn61.pdf
– DOI: 10.1109/SPLC.1993.365563 ·

IEEE Xplore, Proceedings of the
Conference: Scalable Parallel Libraries
Conference, 1993 (25 years ago)

– Microsoft HPC Pack
● PBLAS++

– “in progress”
● BLACS++

– “in progress”

https://bitbucket.org/icl/blaspp
https://bitbucket.org/icl/bblaspp
https://bitbucket.org/icl/lapackpp
http://www.icl.utk.edu/publications/series/swans
http://www.icl.utk.edu/publications/series/swans
http://www.netlib.org/lapack/lawnspdf/lawn61.pdf

8/21bit.ly/siamcse2019

BLAS++ Design Principles

● Lessons learned
– BLAS classic: F..77
– BLAST F..90 interface
– CBLAS

● Netlib
● ATLAS
● MKL

– MKL_DIRECT_CALL

– BLAS G2
● gemm_r64()

● namespace blas {
 template <typename FloatType>
 gemm(..);
}

● Stateless interface
– No more XERBLA()

● Error propagation
– blas_error_if(invalid_input)

● Must be cheap if there are no errors to
keep production runs free from
overheads:

– Pipeline stalls due to branch
instructions

– Stack unwinding code when
exceptions are desired

9/21bit.ly/siamcse2019

LAPACK++ design principles

● LAPACK Wrappers
– LAPACKE
– LAPACK++

● Used by ScaLAPACK++

● LAPACK Translations
– CLAPACK

● ATLAS
● Netlib

● SLATE’s LAPACK++ wrapper
– Do not underestimate the volume of

LAPACK code
● Nearly 400 source files!
● Function declarations: 12k lines
● Wrapper declarations: 10k lines

– Automation is your friend
● Functionality

– Name mangling
– FLOP counts
– Data types

10/21bit.ly/siamcse2019

Batched Interface

11/21bit.ly/siamcse2019

Batched BLAS++ Design Principles

● Lessons learned
– AMD hipBLAS and rocBLAS
– NVIDIA cuBlasBatched

● DGETRI → cublasDmatinvBatched()

– MKL Batched
● Group interface
● Packed GEMM

– MAGMA Batched
● Variable size interface

● namespace blas {
– namespace batch {

 template <typename FloatType>
 gemm(vector<..> const);
}

● }
● Fixed and variable sizes inside a batch

– Uses std::vector::size() to detect
● Error checking more complicated

– No errors (production runs)
– One error (all successful)
– One error code for each matrix in batch

12/21bit.ly/siamcse2019

Schur Complement Performance and GEMM Efficiency

C = C – A × B with small k, i.e., the DGEMM called in LU factorization

The matrix fills out the GPU memory. The X axis shows the k dimension.

Pascal P100 Volta V100
single, large DGEMMsingle, large DGEMM

batched DGEMMbatched DGEMM

preferre
d tile

 size

higher is better

13/21bit.ly/siamcse2019

SLATE: Building on Top of BLAS++, LAPACK++ and
Batched BLAS++

14/21bit.ly/siamcse2019

Data Storage Comparison

LAPACK
MAGMA SLATE

Schur complement: C ← C – A × B
 A
22

 ← A
22

 – A
21

 A
11

-1 A
12

15/21bit.ly/siamcse2019

PLASMA (C) and SLATE(C++) Data Storage Comparison

PLASMA Descriptor

A11

A21

A12

A22

SLATE Tile Map<>

This layout allows in-place translation.

16/21bit.ly/siamcse2019

SLATE Matrix Storage

not allocated

std::map<std::tuple<int64_t, int64_t, int>, Tile<FloatType>*> *tiles_;

● collection of tiles
● individually allocated
● only allocate what is needed
● accommodates: symmetric, triangular, band, …

While in the PLASMA library the matrix
is also stored in tiles, the tiles are laid
out contiguously in memory.

In contrast, in SLATE, the tiles are
individually allocated, with no correlation
of their locations in the matrix to their
addresses in memory.

row column host & devices

full lower triangular band band lower triangular

transient

17/21bit.ly/siamcse2019

SLATE Distributed Matrix

std::map<std::tuple<int64_t, int64_t, int>, Tile<FloatType>*> *tiles_;

● distributed matrix
● global indexing of tiles
● only allocate the local part
● any distribution is possible (2D block cyclic by default)

The same structure, used for
single node representation,
naturally supports distributed
memory representation.

18/21bit.ly/siamcse2019

Looking Forward

19/21bit.ly/siamcse2019

Future Future: Linear Algebra in C++ Std Lib: P1385

● Target release: C++23
● Scope

– Matrices and vectors with rank and dimension
– Additions and subtraction, also negation
– Engine for storage definition and access: fixed size (FS), dynamic size (DS), fixed-

capacity (FC), dynamically re-sizable (DR)
● Quotes:

– Several types of decomposition are often performed in solving least-squares problems.
– Eigen-decompositions are decompositions performed upon a symmetric matrix

● Tensors in C++26?
● “Concurrency and Parallelism” possible in implementations (as in game development)

– See N4454 from 2015 and N4184 from 2014 with SIMD Types
● No slicing, tiling, submatrices, views? But “Transpose Engine” is mentioned.
● Still digesting the content...

wg21.link/p1385

20/21bit.ly/siamcse2019

Response to P1417: Historical Lessons for C++ Lin. Alg. Std.

● These my highlights from Mark Hoemmen’s slides to the C++ committee
– Layering for performance portability and spreading developer expertise
– BLAS: Fortran-based, templating-by-naming, column-major data layout, long param. Lists
– Lowest layer: multi-dim array + SIMD (zero-overhead, compiler support needed, storage)
– mdspan: dimensions, strides, views, access, slices, memory spaces
– 1D is inefficient (data locality, expressivness
– Typing dilemma: vector, matrix, tensor
– Related effort: C++ Graphics library proposal
– Related standard documents: P0009 (multi-dim. arrays), N4744 (SIMD), P1385

(proposal), P1417 (detailed proposal response)

wg21.link/p1417

21/21bit.ly/siamcse2019

MS and Posters of Interest at SIAM CSE
MS Title Date/time

22 C++ in CSE p. 1 9:45pm, 203

57 C++ in CSE p. 2 2:15pm, 203

117 Batched BLAS p. 1 Tue, 9:45

151 Batched BLAS p. 2 Tue, 2:15

197 Task-based Lin. Alg.1 Wed, 9:45

231 Task-based Lin. Alg.2 Wed, 2:15

398 C++ Library for SIMD Fri, 12:45

Sess. Title Date/time

PP103 Software Productivity Tue, 4:50

PP103 Sustainable Linear Algebra Tue, 4:50

PP103 CSE Software Ecosystems Tue, 4:50

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

